Matching Items (13,997)
Filtering by

Clear all filters

Description
This study examines cognitive and motor function in typical older adults following acute exercise. Ten older adults (Mage = 65.1) completed a single session of assisted cycling (AC) (i.e., exercise accomplished through the use of a motor), voluntary cycling (VC) (self-selected cadence), and a no cycling (NC) control group.

This study examines cognitive and motor function in typical older adults following acute exercise. Ten older adults (Mage = 65.1) completed a single session of assisted cycling (AC) (i.e., exercise accomplished through the use of a motor), voluntary cycling (VC) (self-selected cadence), and a no cycling (NC) control group. These sessions were randomized and separated by approximately one week. Both ACT and VC groups rode a stationary bicycle for 30-minutes each session. These sessions were separated by at least two days. Participants completed cognitive testing that assessed information processing and set shifting and motor testing including gross and fine motor performance at the beginning and at the end of each session. Consistent with our hypothesis concerning manual dexterity, the results showed that manual dexterity improved following the ACT session more than the VC or NC sessions. Improvements in set shifting were also found for the ACT session but not for the VC or NC sessions. The results are interpreted with respect to improvements in neurological function in older adults following acute cycling exercise. These improvements are balance, manual dexterity, and set shifting which have a positive effects on activities of daily living; such as, decrease risk of falls, improve movements like eating and handwriting, and increase ability to multitask.
ContributorsSemken, Keith (Author) / Ringenbach, Shannon (Thesis advisor) / Der Ananian, Cheryl (Committee member) / Buman, Matthew (Committee member) / Arizona State University (Publisher)
Created2015
Description
An increase of attention towards our nation’s civic participation downturn has brought the concept of civic engagement to the forefront of young people’s lives. Traditional teaching of long-standing democratic processes via education institutes have begun to evolve in how youth can participate civically, impacting social change within their communities. Civics

An increase of attention towards our nation’s civic participation downturn has brought the concept of civic engagement to the forefront of young people’s lives. Traditional teaching of long-standing democratic processes via education institutes have begun to evolve in how youth can participate civically, impacting social change within their communities. Civics instruction and learning implemented through a progressive pedagogical approach encompasses a greater focus on student-centered instruction, brings relevance to national history, as well as the historical ideals of democracy, and transposes this knowledge unto communities of today. Thus, youth may no longer be considered passive agents within the realm of social change, as they can experience empowerment when working with educators and the greater community. Current civic participation among young people across the United States, however, seems to be paving the way for civic disengagement. Drawing on the progressive education literature and statistical data on civic engagement and youth (particularly in the U. S. and Arizona), this study addresses the need for a civics-based progressive educational shift within the Arizona school system and other educational institutions. In addition to further outlining the need to cultivate civic engagement pedagogies amongst youth today, this thesis explores the construct of Arizona’s Excellence in Civic Engagement Program, which the Arizona Department of Education, in partnership with various community organizations, has established and implemented as a research-based, free standing (separate from state standards) youth civic engagement program. Three participating schools’ program applications are analyzed in regard to the inclusion of democratic ideals and themes, including how these schools enable students to become civically engaged, both within the school setting and greater community. I argue that for the future of this state, nation, and world, young people must be exposed to and engaged with participative opportunities and the civic education interconnectivity in their communities. This study examines the civics-based, progressive education themes needed in schools and educational institutions in order to empower Arizona’s youth and increase efforts to impact social change through civic education.
ContributorsSwanholm, Tara (Author) / Schugurensky, Daniel, 1958- (Thesis advisor) / Swadener, Beth (Committee member) / Fischman, Gustavo (Committee member) / Arizona State University (Publisher)
Created2015
Description
Head movement is a natural orienting behavior for sensing environmental events around us. Head movement is particularly important for identifying through the sense of hearing the location of an out-of-sight, rear-approaching target to avoid danger or threat. This research aims to design a portable device for detecting the head movement

Head movement is a natural orienting behavior for sensing environmental events around us. Head movement is particularly important for identifying through the sense of hearing the location of an out-of-sight, rear-approaching target to avoid danger or threat. This research aims to design a portable device for detecting the head movement patterns of common marmoset monkeys in laboratory environments. Marmoset is a new-world primate species and has become increasingly popular for neuroscience research. Understanding the unique patterns of their head movements will improve its values as a new primate model for uncovering the neurobiology of natural orienting behavior. Due to their relatively small head size (5 cm in diameter) and body weight (300-500 g), the device has to meet several unique design requirements with respect to accuracy and workability. A head-mount wireless tracking system was implemented based on inertial sensors that are capable of detecting motion in the Yaw, Pitch and Roll axes. The sensors were connected to the encoding station, which transmits wirelessly the 3-axis movement data to the decoding station at the sampling rate of ~175 Hz. The decoding station relays this information to the computer for real-time display and analysis. Different tracking systems, based on the accelerometer and Inertial Measurement Unit is implemented to track the head movement pattern of the marmoset head. Using these systems, translational and rotational information of head movement are collected, and the data analysis focuses on the rotational head movement in body-constrained marmosets. Three stimulus conditions were tested: 1) Alert, 2) Idle 3) Sound only. The head movement patterns were examined when the house light was turned on and off for each stimulus. Angular velocity, angular displacement and angular acceleration were analyzed in all three axes.

Fast and large head turns were observed in the Yaw axis in response to the alert stimuli and not much in the idle and sound-only stimulus conditions. Contrasting changes in speed and range of head movement were found between light-on and light-off situations. The mean peak angular displacement was 95 degrees (light on) and 55 (light off) and the mean peak angular velocity was 650 degrees/ second (light on) and 400 degrees/second (light off), respectively, in response to the alert stimuli. These results suggest that the marmoset monkeys may engage in different modes of orienting behaviors with respect to the availability of visual cues and thus the necessity of head movement. This study provides a useful tool for future studies in understanding the interplay among visual, auditory and vestibular systems during nature behavior.
ContributorsPandey, Swarnima (Author) / Zhou, Yi (Thesis advisor) / Tillery, Stephen H (Thesis advisor) / Buneo, Christpher A (Committee member) / Arizona State University (Publisher)
Created2015
Description
The workforce demographics are changing as a large portion of the population is approaching retirement and thus leaving vacancies in the construction industry. Succession planning is an aspect of talent management which aims to mitigate instability faced by a company when a new successor fills a vacancy. Research shows that

The workforce demographics are changing as a large portion of the population is approaching retirement and thus leaving vacancies in the construction industry. Succession planning is an aspect of talent management which aims to mitigate instability faced by a company when a new successor fills a vacancy. Research shows that in addition to a diminishing pool of available talent, the industry does not have widespread, empirically tested and implemented models that lead to effective successions. The objective of this research was to create a baseline profile for succession planning in the construction industry by identifying currently implemented best practices. The author interviewed six companies of varying sizes and demographics within the construction industry and compared their succession planning methodologies to identify any common challenges and practices. Little consensus between the companies was found. The results of the interviews were then compared to current research literature, but even here, little consensus was found. In addition, companies lacked quantitative performance metrics demonstrating the effectiveness, or ineffectiveness, of their current succession planning methodologies. The authors recommended that additional research is carried out to focus on empirical evidence and measurement of industry practices surrounding talent identification, development, and transition leading to succession.
ContributorsGunnoe, Jake A (Author) / Sullivan, Kenneth (Thesis advisor) / Wiezel, Avi (Committee member) / Kashiwagi, Dean (Committee member) / Arizona State University (Publisher)
Created2015
Description
Massive glycerol cluster ions with many charges (~ 106 Da, ~ ±100 charges) have been generated by electrospray to bombard biomolecules and biological sample surfaces. The low impact energy per nucleon facilitates intact sputtering and ionization of biomolecules which can be subsequently imaged. Various lipids, peptides and proteins have been

Massive glycerol cluster ions with many charges (~ 106 Da, ~ ±100 charges) have been generated by electrospray to bombard biomolecules and biological sample surfaces. The low impact energy per nucleon facilitates intact sputtering and ionization of biomolecules which can be subsequently imaged. Various lipids, peptides and proteins have been studied. The primary cluster ion source has been coupled with an ion-microscope imaging mass spectrometer (TRIFT-1, Physical Electronics). A lateral resolution of ~3µm has been demonstrated, which is acceptable for sub-cellular imaging of animal cells (e.g. single cancer cell imaging in early diagnosis). Since the available amount of target molecules per pixel is limited in biological samples, the measurement of useful ion yields (ratio of detected molecular ion counts to the sample molecules sputtered) is important to determine whether enough ion counts per pixel can be obtained. The useful ion yields of several lipids and peptides are in the 1-3×10-5 range. A 3×3 µm2lipid bilayer can produce ~260 counts/pixel for a meaningful 3×3 µm2 pixel ion image. This method can probably be used in cell imaging in the future, when there is a change in the lipid contents of the cell membrane (e.g. cancer cells vs. normal cells).
ContributorsZhang, Jitao (Author) / Williams, Peter (Thesis advisor) / Hayes, Mark (Committee member) / Nelson, Randall (Committee member) / Arizona State University (Publisher)
Created2015
Description
Breast cancer is the most common cancer and currently the second leading cause of death among women in the United States. Patients’ five-year relative survival rate decreases from 99% to 25% when breast cancer is diagnosed late. Immune checkpoint blockage has shown to be a promising therapy to improve patients’

Breast cancer is the most common cancer and currently the second leading cause of death among women in the United States. Patients’ five-year relative survival rate decreases from 99% to 25% when breast cancer is diagnosed late. Immune checkpoint blockage has shown to be a promising therapy to improve patients’ outcome in many other cancers. However, due to the lack of early diagnosis, the treatment is normally given in the later stages. An early diagnosis system for breast cancer could potentially revolutionize current treatment strategies, improve patients’ outcomes and even eradicate the disease. The current breast cancer diagnostic methods cannot meet this demand. A simple, effective, noninvasive and inexpensive early diagnostic technology is needed. Immunosignature technology leverages the power of the immune system to find cancer early. Antibodies targeting tumor antigens in the blood are probed on a high-throughput random peptide array and generate a specific binding pattern called the immunosignature.

In this dissertation, I propose a scenario for using immunosignature technology to detect breast cancer early and to implement an early treatment strategy by using the PD-L1 immune checkpoint inhibitor. I develop a methodology to describe the early diagnosis and treatment of breast cancer in a FVB/N neuN breast cancer mouse model. By comparing FVB/N neuN transgenic mice and age-matched wild type controls, I have found and validated specific immunosignatures at multiple time points before tumors are palpable. Immunosignatures change along with tumor development. Using a late-stage immunosignature to predict early samples, or vice versa, cannot achieve high prediction performance. By using the immunosignature of early breast cancer, I show that at the time of diagnosis, early treatment with the checkpoint blockade, anti-PD-L1, inhibits tumor growth in FVB/N neuN transgenic mouse model. The mRNA analysis of the PD-L1 level in mice mammary glands suggests that it is more effective to have treatment early.

Novel discoveries are changing understanding of breast cancer and improving strategies in clinical treatment. Researchers and healthcare professionals are actively working in the early diagnosis and early treatment fields. This dissertation provides a step along the road for better diagnosis and treatment of breast cancer.
ContributorsDuan, Hu (Author) / Johnston, Stephen Albert (Thesis advisor) / Hartwell, Leland Harrison (Committee member) / Dinu, Valentin (Committee member) / Chang, Yung (Committee member) / Arizona State University (Publisher)
Created2015
Description
This dissertation examines lexical and phonetic variations between Daigi, Hakka, and Modern Standard Chinese elements as used in two Daoist temples of southern Taiwan, the Daode Yuan (DDY) and Yimin Miao (YMM) in Kaohsiung, Taiwan, which form linguistic repertoires from which religious communities construct language variants called religiolects. Specific variations

This dissertation examines lexical and phonetic variations between Daigi, Hakka, and Modern Standard Chinese elements as used in two Daoist temples of southern Taiwan, the Daode Yuan (DDY) and Yimin Miao (YMM) in Kaohsiung, Taiwan, which form linguistic repertoires from which religious communities construct language variants called religiolects. Specific variations in the use of these repertoires appear to be linked to specific religious thought processes. Among my results, one finds that phonetic features of Daigi and Hakka appear linked to the use of language in religious contexts at the DDY and YMM, especially such that alterations in pronunciation, which would otherwise be inappropriate, are linked to speakers of the religiolects processing and producing religious thought in ways they otherwise would not. For example, what would normally be pronounced [tʰe laɪ] internal to one's body would be archaicized as [tʰe lue], from frequent contact with [lue tan] inner alchemy; this leads to reinforced conception of the inner body as sacred space. One also finds that semantic features of lexical items received sacralized contours in overt and non-overt ways, such that lexical items that would otherwise be irreligious become religious in nature; e.g., instances of the appearance of 道, especially in binomial items, would be resolved or parsed by reference to the sacred meaning of the word (such as the [to] in [tsui to tsui], which normally means having its source in, coming to be associated with 道 as path from sacred font).
ContributorsJackson, Paul Allen (Author) / Bokenkamp, Stephen (Thesis advisor) / Oh, Youngkyun (Committee member) / Chen, Huaiyu (Committee member) / Swanson, Todd (Committee member) / Arizona State University (Publisher)
Created2015
Description
Rapid advancements in genomic technologies have increased our understanding of rare human disease. Generation of multiple types of biological data including genetic variation from genome or exome, expression from transcriptome, methylation patterns from epigenome, protein complexity from proteome and metabolite information from metabolome is feasible. "Omics" tools provide comprehensive view

Rapid advancements in genomic technologies have increased our understanding of rare human disease. Generation of multiple types of biological data including genetic variation from genome or exome, expression from transcriptome, methylation patterns from epigenome, protein complexity from proteome and metabolite information from metabolome is feasible. "Omics" tools provide comprehensive view into biological mechanisms that impact disease trait and risk. In spite of available data types and ability to collect them simultaneously from patients, researchers still rely on their independent analysis. Combining information from multiple biological data can reduce missing information, increase confidence in single data findings, and provide a more complete view of genotype-phenotype correlations. Although rare disease genetics has been greatly improved by exome sequencing, a substantial portion of clinical patients remain undiagnosed. Multiple frameworks for integrative analysis of genomic and transcriptomic data are presented with focus on identifying functional genetic variations in patients with undiagnosed, rare childhood conditions. Direct quantitation of X inactivation ratio was developed from genomic and transcriptomic data using allele specific expression and segregation analysis to determine magnitude and inheritance mode of X inactivation. This approach was applied in two families revealing non-random X inactivation in female patients. Expression based analysis of X inactivation showed high correlation with standard clinical assay. These findings improved understanding of molecular mechanisms underlying X-linked disorders. In addition multivariate outlier analysis of gene and exon level data from RNA-seq using Mahalanobis distance, and its integration of distance scores with genomic data found genotype-phenotype correlations in variant prioritization process in 25 families. Mahalanobis distance scores revealed variants with large transcriptional impact in patients. In this dataset, frameshift variants were more likely result in outlier expression signatures than other types of functional variants. Integration of outlier estimates with genetic variants corroborated previously identified, presumed causal variants and highlighted new candidate in previously un-diagnosed case. Integrative genomic approaches in easily attainable tissue will facilitate the search for biomarkers that impact disease trait, uncover pharmacogenomics targets, provide novel insight into molecular underpinnings of un-characterized conditions, and help improve analytical approaches that use large datasets.
ContributorsSzelinger, Szabolcs (Author) / Craig, David W. (Thesis advisor) / Kusumi, Kenro (Thesis advisor) / Narayan, Vinodh (Committee member) / Rosenberg, Michael S. (Committee member) / Huentelman, Matthew J (Committee member) / Arizona State University (Publisher)
Created2015
Description
There are many educational issues connected to the exponential growth of the Latina/o population in the U.S. One such issue is Latina/os’ educational outcomes in the area of literacy. Despite the increased attention to subpopulations of students (e.g., English language learners, students with disabilities) there is little attention

There are many educational issues connected to the exponential growth of the Latina/o population in the U.S. One such issue is Latina/os’ educational outcomes in the area of literacy. Despite the increased attention to subpopulations of students (e.g., English language learners, students with disabilities) there is little attention given to students that do not fit neatly into one subcategory, which positions Latina/o language minorities (LMs) with learning disabilities (LDs) in a liminal space where their educational services are fragmented into either being a student with LD or a LM student. Unfortunately, labels that are meant to afford students resources often result in fragmenting students’ educational experiences. This becomes evident when attempting to locate research on students who have ethnic, linguistic, and ability differences. Rarely are their educational needs as Latina/o LMs with LD met fluidly. Understanding the intersections of ethnicity, language, and ability differences in situated literacy practice is imperative to creating the deep, nuanced understanding of how Latina/o LMs with LD might become proficient in the use of critical twenty-first century tools such as new literacies. In this study I used cultural historical activity theory in combination with New Literacy Studies (Cope & Kalantzis, 2009; Gee, 1996) and intersectionality (McCall, 2014) to examine how Latina/o LMs with LD’s participated in literacies across in- and out-of-school contexts with the following research questions: In what ways does participation in literacy change for Latina/o LMs with LD as they move between in- and out-of-school? What situated identities do LMs with LD enact and resist while participating in literacy across in- and out-of-school contexts?
ContributorsGonzalez, Taucia (Author) / Artiles, Alfredo J. (Thesis advisor) / Kozleski, Elizabeth B. (Committee member) / Hudelson, Sarah (Committee member) / Arizona State University (Publisher)
Created2015
Description
Dissimilar metal joints such as aluminum-steel joints are extensively used in automobile, naval and aerospace applications and these are subjected to corrosive environmental and mechanical loading resulting in eventual failure of the structural joints. In the case of aluminum alloys under aggressive environment, the damage accumulation is predominantly due to

Dissimilar metal joints such as aluminum-steel joints are extensively used in automobile, naval and aerospace applications and these are subjected to corrosive environmental and mechanical loading resulting in eventual failure of the structural joints. In the case of aluminum alloys under aggressive environment, the damage accumulation is predominantly due to corrosion and is accelerated in presence of other metals. During recent years several approaches have been employed to develop models to assess the metal removal rate in the case of galvanic corrosion. Some of these models are based on empirical methods such as regression analysis while others are based on quantification of the ongoing electrochemical processes. Here, a numerical model for solving the Nernst- Planck equation, which captures the electrochemical process, is implemented to predict the galvanic current distribution and, hence, the corrosion rate of a galvanic couple. An experimentally validated numerical model for an AE44 (Magnesium alloy) and mild steel galvanic couple, available in the literature, is extended to simulate the mechano- electrochemical process in order to study the effect of mechanical loading on the galvanic current density distribution and corrosion rate in AE44-mild steel galvanic couple through a multiphysics field coupling technique in COMSOL Multiphysics®. The model is capable of tracking moving boundariesy of the corroding constituent of the couple by employing Arbitrary Langrangian Eulerian (ALE) method.Results show that, when an anode is under a purely elastic deformation, there is no apparent effect of mechanical loading on the electrochemical galvanic process. However, when the applied tensile load is sufficient to cause a plastic deformation, the local galvanic corrosion activity at the vicinity of the interface is increased remarkably. The effect of other factors, such as electrode area ratios, electrical conductivity of the electrolyte and depth of the electrolyte, are studied. It is observed that the conductivity of the electrolyte significantly influences the surface profile of the anode, especially near the junction. Although variations in electrolyte depth for a given galvanic couple noticeably affect the overall corrosion, the change in the localized corrosion rate at the interface is minimal. Finally, we use the model to predict the current density distribution, rate of corrosion and depth profile of aluminum alloy 7075-stainless steel 316 galvanic joints, which are extensively used in maritime structures.
ContributorsMuthegowda, Nitin Chandra (Author) / Solanki, Kiran N (Thesis advisor) / Rykaczewski, Konrad (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2015