Matching Items (105)
Description

With potential for automobiles to cause air pollution and greenhouse gas emissions relative to other modes, there is concern that automobiles accessing or egressing public transportation may significantly increase human and environmental impacts from door-to-door transit trips. Yet little rigorous work has been developed that quantitatively assesses the effects of

With potential for automobiles to cause air pollution and greenhouse gas emissions relative to other modes, there is concern that automobiles accessing or egressing public transportation may significantly increase human and environmental impacts from door-to-door transit trips. Yet little rigorous work has been developed that quantitatively assesses the effects of transit access or egress by automobiles.

This research evaluates the life-cycle impacts of first and last mile trips on multimodal transit. A case study of transit and automobile travel in the greater Los Angeles region is developed. First and last mile automobile trips were found to increase multimodal transit trip emissions, mitigating potential impact reductions from transit usage. In some cases, a multimodal transit trips with automobile access or egress may be higher than a competing automobile trip.

In the near-term, automobile access or egress in some Los Angeles transit systems may account for up to 66% of multimodal greenhouse gas trip emissions, and as much as 75% of multimodal air quality impacts. Fossil fuel energy generation and combustion, low vehicle occupancies, and longer trip distances contribute most to increased multimodal trip impacts. Spatial supply chain analysis indicates that life-cycle air quality impacts may occur largely locally (in Los Angeles) or largely remotely (elsewhere) depending on the propulsion method and location of upstream life-cycle processes. Reducing 10% of transit system greenhouse emissions requires a shift of 23% to 50% of automobile access or egress trips to a zero emissions mode.

A corresponding peer-reviewed journal publication is available here:
Greenhouse Gas and Air Quality Effects of Auto First-Last Mile Use With Transit, Christopher Hoehne and Mikhail Chester, 2017, Transportation Research Part D, 53, pp. 306-320,

Description

Mitigation of urban heat islands has become a goal for research and policy as urban environmental heat is a rapidly growing concern. Urban regions such as Phoenix, AZ are facing projected warming as urban populations grow and global climates warm (McCarthy et al. 2010), and severe urban heat can even

Mitigation of urban heat islands has become a goal for research and policy as urban environmental heat is a rapidly growing concern. Urban regions such as Phoenix, AZ are facing projected warming as urban populations grow and global climates warm (McCarthy et al. 2010), and severe urban heat can even lead to human mortality and morbidity (Berko et al. 2014). Increased urban heat may also have social and economic consequences such as by discouraging physical activity, reducing outdoor accessibility, and decreasing economic output (Stamatakis et al. 2013; Karner et al. 2015; Obradovich & Fowler 2017; Kjellstrom et al. 2009). Urban heat islands have been well documented in academic literature (Oke 1982; Arnfield 2003), and anthropogenic waste heat is often a major factor. The American Meteorological Society (2012) has said that anthropogenic waste heat may contribute “15 – 50 W/m2 to the local heat balance, and several hundred W/m2 in the center of large cities in cold climates and industrial areas.”

Anthropogenic waste heat from urban vehicle travel may be a notable contributor to the urban heat balance and the urban heat island effect, but little research has quantified and explored how changes in vehicle travel may influence local climates. Even with recent rapid improvements to engine efficiencies, modern automobiles still convert small amounts of fuel to useful energy. Typically, around two-thirds of energy from fuel in internal combustion engine vehicles is lost as waste heat through exhaust and coolant (Hsiao et al. 2010; Yu & Chau 2009; Saidur et al. 2009; Endo et al. 2007), and as much as 80% of fuel energy can be lost to waste heat under poor conditions (Orr et al. 2016). In addition, combustion of fuel generates water vapor and air pollution which may also affect the urban climate. Figure 1 displays where a typical combustion engine’s fuel energy is used and lost. There has been little research that quantifies the influence of vehicle travel on urban anthropogenic waste heat. According to Sailor and Lu (2004), most cities have peak anthropogenic waste heat values between 30 and 60 W m-2 (averaged across city) and heating from vehicles could make up as much as 62% of the total in summer months. Additionally, they found that vehicle waste heat could account for up to 300 W m-2 during rush hours over freeways. In another study, Hart & Sailor (2009) used in situ measurements in Portland, OR to evaluate spatial variability of air temperatures on urban roadways. They found that air masses near major roadways are some of the warmest in the region. Although some of the warming is attributed to pavement characteristics (imperviousness, low albedo), an average increase of 1.3 C was observed on weekdays relative to weekends along roadways. The authors offer increased weekday traffic density and building use as the likely contributors to this discrepancy. These previous studies indicates that vehicle related waste heat could be an important consideration in the urban energy balance. If significant, there may exist viable strategies to reduce anthropogenic waste heat from urban vehicle travel by increasing the fleet fuel economy and shifting to electric vehicles. This could offer cooling in urban areas around roadways were pedestrians are often found. Figure 2 visually demonstrates waste heat from vehicles (including an electric vehicle) in two thermal images.

Created2018-01-15
92-Thumbnail Image.png
Description

As technologies rapidly progress, there is growing evidence that our civil infrastructure do not have the capacity to adaptively and reliably deliver services in the face of rapid changes in demand, conditions of service, and environmental conditions. Infrastructure are facing multiple challenges including inflexible physical assets, unstable and insufficient funding,

As technologies rapidly progress, there is growing evidence that our civil infrastructure do not have the capacity to adaptively and reliably deliver services in the face of rapid changes in demand, conditions of service, and environmental conditions. Infrastructure are facing multiple challenges including inflexible physical assets, unstable and insufficient funding, maturation, utilization, increasing interdependencies, climate change, social and environmental awareness, changes in coupled technology systems, lack of transdisciplinary expertise, geopolitical security, and wicked complexity. These challenges are interrelated and several produce non-stationary effects. Successful infrastructure in the twenty-first century will need to be flexible and agile. Drawing from other industries, we provide recommendations for competencies to realize flexibility and agility: roadmapping, focus on software over hardware, resilience-based thinking, compatibility, connectivity, and modularity of components, organic and change-oriented management, and transdisciplinary education. First, we will need to understand how non-technical and technical forces interact to lock in infrastructure, and create path dependencies.

This report has been advanced to a peer-reviewed journal publication:
Mikhail Chester and Braden Allenby, 2008, Toward adaptive infrastructure: flexibility and agility in a non-stationarity age, Sustainable and Resilient Infrastructure, pp. 1-19, DOI: 10.1080/23789689.2017.1416846.

Description

This report updates Supplementary Information section 2.1.2.2 (Recirculating Cooling) of Bartos and Chester (2015). Extraneous derivations have been removed and an error corrected.

Impacts of Climate Change on Electric Power Supply in the Western U.S., Matthew Bartos and Mikhail Chester, Nature Climate Change, 2015, 4(8), pp. 748-752, DOI: 10.1038
climate2648. 

Description
Despite widespread acknowledgement of the need for transformation towards sustainability, the majority of cities appear stuck in incremental change instead of far-reaching, radical change. While there are numerous obstacles to transformational change, one critical aspect is the process of selecting impactful sustainability programs. The unique and complex nature of sustainability

Despite widespread acknowledgement of the need for transformation towards sustainability, the majority of cities appear stuck in incremental change instead of far-reaching, radical change. While there are numerous obstacles to transformational change, one critical aspect is the process of selecting impactful sustainability programs. The unique and complex nature of sustainability suggests a different approach is needed to program selection than is normal. But, to what extent are cities adapting selection processes in response to sustainability and what effect does this have on sustainable urban transformation? Could there be a more effective process to select programs with greater transformational potential? This dissertation investigates these questions using case studies and action research to add to the general knowledge of urban sustainability program selection and to develop practical knowledge (solutions) for more effective sustainable urban transformation.

The dissertation consists of three studies. Study 1 uses a case study approach to investigate existing sustainability program selection processes in three cities: Avondale, USA; Almere, the Netherlands; and Freiburg, Germany. These cities all express commitment to sustainability but have varying degrees of sustainable development experience, accomplishment, and recognition. Study 2 develops a program selection framework for urban sustainable transformation drawing extensively from the literature on sustainability assessment and related fields, and on participatory input from municipal practitioners in Avondale and Almere. Study 3 assesses the usefulness of the framework in a dual pilot study. Participatory workshops were conducted in which the framework was applied to real-world situations: (i) with the city’s sustainability working group in Avondale; and (ii) with a local energy cooperative in Almere.

Overall, findings suggest cities are not significantly adapting program selection processes in response to the challenges of sustainability. Processes are often haphazard, opportunistic, driven elite actors, and weakly aligned with sustainability principles and goals, which results in selected programs being more incremental than transformational. The proposed framework appears effective at opening up the range of program options considered, stimulating constructive deliberation among participants, and promoting higher order learning. The framework has potential for nudging program selection towards transformational outcomes and more deeply embedding sustainability within institutional culture.
ContributorsForrest, Nigel (Author) / Wiek, Arnim (Thesis advisor) / Melnick, Rob (Committee member) / Schugurensky, Daniel, 1958- (Committee member) / Arizona State University (Publisher)
Created2015
Description
Urban areas face a host of sustainability problems ranging from air and water quality, to housing affordability, and sprawl reducing returns on infrastructure investments, among many others. To address such challenges, cities have begun to envision generational sustainability transitions, and coalesce transition arenas in context to manage those transitions. Transition

Urban areas face a host of sustainability problems ranging from air and water quality, to housing affordability, and sprawl reducing returns on infrastructure investments, among many others. To address such challenges, cities have begun to envision generational sustainability transitions, and coalesce transition arenas in context to manage those transitions. Transition arenas coordinate the efforts of diverse stakeholders in a setting conducive to making evidence-based decisions that guide a transition forward. Though espoused and studied in the literature, transition arenas still require further research on the specifics of agent selection, arena setting, and decision-making facilitation. This dissertation has three related contributions related to transition arenas. First, it describes a process that took place within Phoenix that focused on identifying, recruiting, and building the capacity of potential transition agents for a transition arena. As part of this, a first draft suggestion of plausible steps to take for identifying, recruiting, and building a team of transition agents is proposed followed by a brief discussion on how this step-by-step process could be evaluated in subsequent work. Second, building on such engagement, this dissertation then offers criteria for transition agent selection based on a review of the literature that includes the setting in which a transition arena occurs, and strategies to support successful facilitation of decision-making in that setting. Third, those criteria are operationalized to evaluate the facilitation of a specific decision (draft of a new transportation plan) in a specific transition arena: the Citizens Committee for the future of Phoenix Transportation. The goal of this dissertation is to articulate a first-draft framework for guiding the development and scientific evaluation of transition arenas. Future work is required to empirically validate the framework in other real-world transition arenas. A feasible research agenda is provides to support this work.
ContributorsHarlow, John (Author) / Hekler, Eric (Thesis advisor) / Golub, Aaron (Thesis advisor) / Johnston, Erik W., 1977- (Committee member) / Wiek, Arnim (Committee member) / Arizona State University (Publisher)
Created2015
Description

Three dilemmas plague governance of scientific research and technological

innovation: the dilemma of orientation, the dilemma of legitimacy, and the dilemma of control. The dilemma of orientation risks innovation heedless of long-term implications. The dilemma of legitimacy grapples with delegation of authority in democracies, often at the expense of broader public

Three dilemmas plague governance of scientific research and technological

innovation: the dilemma of orientation, the dilemma of legitimacy, and the dilemma of control. The dilemma of orientation risks innovation heedless of long-term implications. The dilemma of legitimacy grapples with delegation of authority in democracies, often at the expense of broader public interest. The dilemma of control poses that the undesirable implications of new technologies are hard to grasp, yet once grasped, all too difficult to remedy. That humanity has innovated itself into the sustainability crisis is a prime manifestation of these dilemmas.

Responsible innovation (RI), with foci on anticipation, inclusion, reflection, coordination, and adaptation, aims to mitigate dilemmas of orientation, legitimacy, and control. The aspiration of RI is to bend the processes of technology development toward more just, sustainable, and societally desirable outcomes. Despite the potential for fruitful interaction across RI’s constitutive domains—sustainability science and social studies of science and technology—most sustainability scientists under-theorize the sociopolitical dimensions of technological systems and most science and technology scholars hesitate to take a normative, solutions-oriented stance. Efforts to advance RI, although notable, entail one-off projects that do not lend themselves to comparative analysis for learning.

In this dissertation, I offer an intervention research framework to aid systematic study of intentional programs of change to advance responsible innovation. Two empirical studies demonstrate the framework in application. An evaluation of Science Outside the Lab presents a program to help early-career scientists and engineers understand the complexities of science policy. An evaluation of a Community Engagement Workshop presents a program to help engineers better look beyond technology, listen to and learn from people, and empower communities. Each program is efficacious in helping scientists and engineers more thoughtfully engage with mediators of science and technology governance dilemmas: Science Outside the Lab in revealing the dilemmas of orientation and legitimacy; Community Engagement Workshop in offering reflexive and inclusive approaches to control. As part of a larger intervention research portfolio, these and other projects hold promise for aiding governance of science and technology through responsible innovation.

ContributorsBernstein, Michael J. (Author) / Wiek, Arnim (Thesis advisor) / Wetmore, Jameson M. (Thesis advisor) / Grimm, Nancy (Committee member) / Anderies, John M (Committee member) / Arizona State University (Publisher)
Created2016
Description
Economic development over the last century has driven a tripling of the world's population, a twenty-fold increase in fossil fuel consumption, and a tripling of traditional biomass consumption. The associated broad income and wealth inequities are retaining over 2 billion people in poverty. Adding to this, fossil fuel combustion is

Economic development over the last century has driven a tripling of the world's population, a twenty-fold increase in fossil fuel consumption, and a tripling of traditional biomass consumption. The associated broad income and wealth inequities are retaining over 2 billion people in poverty. Adding to this, fossil fuel combustion is impacting the environment across spatial and temporal scales and the cost of energy is outpacing all other variable costs for most industries. With 60% of world energy delivered in 2008 consumed by the commercial and industrial sector, the fragmented and disparate energy-related decision making within organizations are largely responsible for the inefficient and impacting use of energy resources. The global transition towards sustainable development will require the collective efforts of national, regional, and local governments, institutions, the private sector, and a well-informed public. The leadership role in this transition could be provided by private and public sector organizations, by way of sustainability-oriented organizations, cultures, and infrastructure. The diversity in literature exemplifies the developing nature of sustainability science, with most sustainability assessment approaches and frameworks lacking transformational characteristics, tending to focus on analytical methods. In general, some shortfalls in sustainability assessment processes include lack of: * thorough stakeholder participation in systems and stakeholder mapping, * participatory envisioning of future sustainable states, * normative aggregation of results to provide an overall measure of sustainability, and * influence within strategic decision-making processes. Specific to energy sustainability assessments, while some authors aggregate results to provide overall sustainability scores, assessments have focused solely on energy supply scenarios, while including the deficits discussed above. This paper presents a framework for supporting organizational transition processes towards sustainable energy systems, using systems and stakeholder mapping, participatory envisioning, and sustainability assessment to prepare the development of transition strategies towards realizing long-term energy sustainability. The energy system at Arizona State University's Tempe campus (ASU) in 2008 was used as a baseline to evaluate the sustainability of the current system. From interviews and participatory workshops, energy system stakeholders provided information to map the current system and measure its performance. Utilizing operationalized principles of energy sustainability, stakeholders envisioned a future sustainable state of the energy system, and then developed strategies to begin transition of the current system to its potential future sustainable state. Key findings include stakeholders recognizing that the current energy system is unsustainable as measured against principles of energy sustainability and an envisioned future sustainable state of the energy system. Also, insufficient governmental stakeholder engagement upstream within the current system could lead to added risk as regulations affect energy supply. Energy demand behavior and consumption patterns are insufficiently understood by current stakeholders, limiting participation and accountability from consumers. In conclusion, although this research study focused on the Tempe campus, ASU could apply this process to other campuses thereby improving overall ASU energy system sustainability. Expanding stakeholder engagement upstream within the energy system and better understanding energy consumption behavior can also improve long-term energy sustainability. Finally, benchmarking ASU's performance against its peer universities could expand the current climate commitment of participants to broader sustainability goals.
ContributorsBuch, Rajesh (Author) / Wiek, Arnim (Thesis advisor) / Basile, George (Thesis advisor) / Williams, Eric (Committee member) / Arizona State University (Publisher)
Created2011
Description
Public participation is considered an essential process for achieving sustainable urban development. Often, however, insufficient attention is paid to the design of public participation, and processes are formulaic. Then, participation may not match the local context of the communities within which a project is conducted. As a result,

Public participation is considered an essential process for achieving sustainable urban development. Often, however, insufficient attention is paid to the design of public participation, and processes are formulaic. Then, participation may not match the local context of the communities within which a project is conducted. As a result, participation may become co-optative or coercive, stakeholders may lose trust, and outcomes may favor special interests or be unsustainable, among other shortcomings.

In this research, urban public participation is a collaborative decision-making process between residents, businesses, experts, public officials, and other stakeholders. When processes are not attuned with the local context (participant lifestyles, needs, interests, and capacities) misalignments between process and context arise around living conditions and personal circumstances, stakeholder trust, civic engagement, collaborative capacity, and sustainability literacy, among others.

This dissertation asks (1) what challenges arise when the public participation process does not match the local context, (2) what are key elements of public participation processes that are aligned with the local context, (3) what are ways to design public participation that align with specific local contexts, and (4) what societal qualities and conditions are necessary for meaningful participatory processes?

These questions are answered through four interrelated studies. Study 1 analyzes the current state of the problem by reviewing public participation processes and categorizing common misalignments with the local context. Study 2 envisions a future in which the problem is solved by identifying the features of well-aligned processes. Studies 3 and 4 test interventions for achieving the vision.

This dissertation presents a framework for analyzing the local context in urban development projects and designing public participation processes to meet this context. This work envisions public participation processes aligned with their local context, and it presents directives for designing deliberative decision-making processes for sustainable urban development. The dissertation applies a systems perspective to the social process of public participation, and it provides empirical support for theoretical debates on public participation while creating actionable knowledge for planners and practitioners.
ContributorsCohen, Matthew Charles (Author) / Wiek, Arnim (Thesis advisor) / Manuel-Navarrete, David (Thesis advisor) / Schugurensky, Daniel, 1958- (Committee member) / Arizona State University (Publisher)
Created2015
Description
Cities around the globe struggle with socio-economic disparities, resource inefficiency, environmental contamination, and quality-of-life challenges. Technological innovation, as one prominent approach to problem solving, promises to address these challenges; yet, introducing new technologies, such as nanotechnology, into society and cities has often resulted in negative consequences. Recent research has conceptually

Cities around the globe struggle with socio-economic disparities, resource inefficiency, environmental contamination, and quality-of-life challenges. Technological innovation, as one prominent approach to problem solving, promises to address these challenges; yet, introducing new technologies, such as nanotechnology, into society and cities has often resulted in negative consequences. Recent research has conceptually linked anticipatory governance and sustainability science: to understand the role of technology in complex problems our societies face; to anticipate negative consequences of technological innovation; and to promote long-term oriented and responsible governance of technologies. This dissertation advances this link conceptually and empirically, focusing on nanotechnology and urban sustainability challenges. The guiding question for this dissertation research is: How can nanotechnology be innovated and governed in responsible ways and with sustainable outcomes? The dissertation: analyzes the nanotechnology innovation process from an actor- and activities-oriented perspective (Chapter 2); assesses this innovation process from a comprehensive perspective on sustainable governance (Chapter 3); constructs a small set of future scenarios to consider future implications of different nanotechnology governance models (Chapter 4); and appraises the amenability of sustainability problems to nanotechnological interventions (Chapter 5). The four studies are based on data collected through literature review, document analysis, participant observation, interviews, workshops, and walking audits, as part of process analysis, scenario construction, and technology assessment. Research was conducted in collaboration with representatives from industry, government agencies, and civic organizations. The empirical parts of the four studies focus on Metropolitan Phoenix. Findings suggest that: predefined mandates and economic goals dominate the nanotechnology innovation process; normative responsibilities identified by risk governance, sustainability-oriented governance, and anticipatory governance are infrequently considered in the nanotechnology innovation process; different governance models will have major impacts on the role and effects of nanotechnology in cities in the future; and nanotechnologies, currently, do not effectively address the root causes of urban sustainability challenges and require complementary solution approaches. This dissertation contributes to the concepts of anticipatory governance and sustainability science on how to constructively guide nanotechnological innovation in order to harvest its positive potential and safeguard against negative consequences.
ContributorsFoley, Rider Williams (Author) / Wiek, Arnim (Thesis advisor) / Guston, David H. (Committee member) / Seager, Thomas P (Committee member) / Minteer, Ben A (Committee member) / Arizona State University (Publisher)
Created2013