
Features projects advancing women of color in the tech field.

Features projects advancing women of color in the tech field.

Features projects advancing women of color in the tech field.

Features projects advancing women of color in the tech field.

Features projects advancing women of color in the tech field.

Self-efficacy in engineering, engineering identity, and coping in engineering have been shown in previous studies to be highly important in the advancement of one’s development in the field of engineering. Through the creation and deployment of a 17 question survey, undergraduate and first year masters students were asked to provide information on their engagement at their university, their demographic information, and to rank their level of agreement with 22 statements relating to the aforementioned ideas. Using the results from the collected data, exploratory factor analysis was completed to identify the factors that existed and any correlations. No statistically significant correlations between the identified three factors and demographic or engagement information were found. There needs to be a significant increase in the data sample size for statistically significant results to be found. Additionally, there is future work needed in the creation of an engagement measure that successfully reflects the level and impact of participation in engineering activities beyond traditional coursework.
In collaboration with Moog Broad Reach and Arizona State University, a<br/>team of five undergraduate students designed a hardware design solution for<br/>protecting flash memory data in a spaced-based radioactive environment. Team<br/>Aegis have been working on the research, design, and implementation of a<br/>Verilog- and Python-based error correction code using a Reed-Solomon method<br/>to identify bit changes of error code. For an additional senior design project, a<br/>Python code was implemented that runs statistical analysis to identify whether<br/>the error correction code is more effective than a triple-redundancy check as well<br/>as determining if the presence of errors can be modeled by a regression model.