A statistical method is proposed to learn what the diffusion coefficient is at any point in space of a cell membrane. The method used bayesian non-parametrics to learn this value. Learning the diffusion coefficient might be useful for understanding more about cellular dynamics.
We attempt to analyze the effect of fatigue on free throw efficiency in the National Basketball Association (NBA) using play-by-play data from regular-season, regulation-length games in the 2016-2017, 2017-2018, and 2018-2019 seasons. Using both regression and tree-based statistical methods, we analyze the relationship between minutes played total and minutes played continuously at the time of free throw attempts on players' odds of making an attempt, while controlling for prior free throw shooting ability, longer-term fatigue, and other game factors. Our results offer strong evidence that short-term activity after periods of inactivity positively affects free throw efficiency, while longer-term fatigue has no effect.



is known as the high-voltage (HV) solution or operable solution. The rest of the solutions
are the low-voltage (LV), or large-angle, solutions.
In this report, a recently developed non-iterative algorithm for solving the power-
flow (PF) problem using the holomorphic embedding (HE) method is shown as
being capable of finding the HV solution, while avoiding converging to LV solutions
nearby which is a drawback to all other iterative solutions. The HE method provides a
novel non-iterative procedure to solve the PF problems by eliminating the
non-convergence and initial-estimate dependency issues appeared in the traditional
iterative methods. The detailed implementation of the HE method is discussed in the
report.
While published work focuses mainly on finding the HV PF solution, modified
holomorphically embedded formulations are proposed in this report to find the
LV/large-angle solutions of the PF problem. It is theoretically proven that the proposed
method is guaranteed to find a total number of 2N solutions to the PF problem
and if no solution exists, the algorithm is guaranteed to indicate such by the oscillations
in the maximal analytic continuation of the coefficients of the voltage power series
obtained.
After presenting the derivation of the LV/large-angle formulations for both PQ
and PV buses, numerical tests on the five-, seven- and 14-bus systems are conducted
to find all the solutions of the system of nonlinear PF equations for those systems using
the proposed HE method.
After completing the derivation to find all the PF solutions using the HE method, it
is shown that the proposed HE method can be used to find only the of interest PF solutions
(i.e. type-1 PF solutions with one positive real-part eigenvalue in the Jacobian
matrix), with a proper algorithm developed. The closet unstable equilibrium point
(UEP), one of the type-1 UEP’s, can be obtained by the proposed HE method with
limited dynamic models included.
The numerical performance as well as the robustness of the proposed HE method is
investigated and presented by implementing the algorithm on the problematic cases and
large-scale power system.

in representing images compactly. Nonetheless, high-order methods have difficulty representing functions containing discontinuities or functions having slow spectral decay in the chosen basis. Certain sensing techniques such as MRI and SAR provide data in terms of Fourier coefficients, and thus prescribe a natural high-order basis. The field of compressed sensing has introduced a set of techniques based on $\ell^1$ regularization that promote sparsity and facilitate working with functions having discontinuities. In this dissertation, high-order methods and $\ell^1$ regularization are used to address three problems: reconstructing piecewise smooth functions from sparse and and noisy Fourier data, recovering edge locations in piecewise smooth functions from sparse and noisy Fourier data, and reducing time-stepping constraints when numerically solving certain time-dependent hyperbolic partial differential equations.
