A statistical method is proposed to learn what the diffusion coefficient is at any point in space of a cell membrane. The method used bayesian non-parametrics to learn this value. Learning the diffusion coefficient might be useful for understanding more about cellular dynamics.
Over time, tumor treatment resistance inadvertently develops when androgen de-privation therapy (ADT) is applied to metastasized prostate cancer (PCa). To combat tumor resistance, while reducing the harsh side effects of hormone therapy, the clinician may opt to cyclically alternates the patient’s treatment on and off. This method,known as intermittent ADT, is an alternative to continuous ADT that improves the patient’s quality of life while testosterone levels recover between cycles. In this paper,we explore the response of intermittent ADT to metastasized prostate cancer by employing a previously clinical data validated mathematical model to new clinical data from patients undergoing Abiraterone therapy. This cell quota model, a system of ordinary differential equations constructed using Droop’s nutrient limiting theory, assumes the tumor comprises of castration-sensitive (CS) and castration-resistant (CR)cancer sub-populations. The two sub-populations rely on varying levels of intracellular androgen for growth, death and transformation. Due to the complexity of the model,we carry out sensitivity analyses to study the effect of certain parameters on their outputs, and to increase the identifiability of each patient’s unique parameter set. The model’s forecasting results show consistent accuracy for patients with sufficient data,which means the model could give useful information in practice, especially to decide whether an additional round of treatment would be effective.
In the last two decades, fantasy sports have grown massively in popularity. Fantasy football in particular is the most popular fantasy sport in the United States. People spend hours upon hours every year building, researching, and perfecting their teams to compete with others for money or bragging rights. One problem, however, is that National Football League (NFL) players are human and will not perform the same as they did last week or last season. Because of this, there is a need to create a machine learning model to help predict when players will have a tough game or when they can perform above average. This report discusses the history and science of fantasy football, gathering large amounts of player data, manipulating the information to create more insightful data points, creating a machine learning model, and how to use this tool in a real-world situation. The initial model created significantly accurate predictions for quarterbacks and running backs but not receivers and tight ends. Improvements significantly increased the accuracy by reducing the mean average error to below one for all positions, resulting in a successful model for all four positions.
The main purpose of this project is to create a method for determining the absolute position of an accelerometer. Acceleration and angular speed were obtained from an accelerometer attached to a vehicle as it moves around. As the vehicle moves to collect information the orientation of the accelerometer changes, so a rotation matrix is applied to the data based on the angular change at each time. The angular change and distance are obtained by using the trapezoidal approximation of the integrals. This method was first validated by using simple sets of "true" data which are explicitly known sets of data to compare the results to. Then, an analysis of how different time steps and levels of noise affect the error of the results was performed to determine the optimal time step of 0.1 sec that was then used for the actual tests. The tests that were performed were: a stationary test for uses of calibration, a straight line test to verify a simple test, and a closed loop test to test the accuracy. The graphs for these tests give no indication of the actual paths, so the final results can only show that the data from the accelerometer is too noisy and inaccurate for this method to be used by this sensor. The future work would be to test different ways to get more accurate data and then use it to verify this methods. These ways could include using more sensors to interpolate the data, reducing noise by using a different sensor, or adding a filter. Then, if this method is considered accurate enough, it could be implemented into control systems.
We attempt to analyze the effect of fatigue on free throw efficiency in the National Basketball Association (NBA) using play-by-play data from regular-season, regulation-length games in the 2016-2017, 2017-2018, and 2018-2019 seasons. Using both regression and tree-based statistical methods, we analyze the relationship between minutes played total and minutes played continuously at the time of free throw attempts on players' odds of making an attempt, while controlling for prior free throw shooting ability, longer-term fatigue, and other game factors. Our results offer strong evidence that short-term activity after periods of inactivity positively affects free throw efficiency, while longer-term fatigue has no effect.