Matching Items (84)
Description
Glioblastoma multiforme (GBMs) is the most prevalent brain tumor type and causes approximately 40% of all non-metastic primary tumors in adult patients [1]. GBMs are malignant, grade-4 brain tumors, the most aggressive classication as established by the World Health Organization and are marked by their low survival rate; the median

Glioblastoma multiforme (GBMs) is the most prevalent brain tumor type and causes approximately 40% of all non-metastic primary tumors in adult patients [1]. GBMs are malignant, grade-4 brain tumors, the most aggressive classication as established by the World Health Organization and are marked by their low survival rate; the median survival time is only twelve months from initial diagnosis: Patients who live more than three years are considered long-term survivors [2]. GBMs are highly invasive and their diffusive growth pattern makes it impossible to remove the tumors by surgery alone [3]. The purpose of this paper is to use individual patient data to parameterize a model of GBMs that allows for data on tumor growth and development to be captured on a clinically relevant time scale. Such an endeavor is the rst step to a clinically applicable predictions of GBMs. Previous research has yielded models that adequately represent the development of GBMs, but they have not attempted to follow specic patient cases through the entire tumor process. Using the model utilized by Kostelich et al. [4], I will attempt to redress this deciency. In doing so, I will improve upon a family of models that can be used to approximate the time of development and/or structure evolution in GBMs. The eventual goal is to incorporate Magnetic Resonance Imaging (MRI) data into a parameterized model of GBMs in such a way that it can be used clinically to predict tumor growth and behavior. Furthermore, I hope to come to a denitive conclusion as to the accuracy of the Koteslich et al. model throughout the development of GBMs tumors.
ContributorsManning, Miles (Author) / Kostelich, Eric (Thesis director) / Kuang, Yang (Committee member) / Preul, Mark (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
Description
This thesis shows analyses of mixing and transport patterns associated with Hurricane Katrina as it hit the United States in August of 2005. Specifically, by applying atmospheric velocity information from the Weather Research and Forecasting System, finite-time Lyapunov exponents have been computed and the Lagrangian Coherent Structures have been identified.

This thesis shows analyses of mixing and transport patterns associated with Hurricane Katrina as it hit the United States in August of 2005. Specifically, by applying atmospheric velocity information from the Weather Research and Forecasting System, finite-time Lyapunov exponents have been computed and the Lagrangian Coherent Structures have been identified. The chaotic dynamics of material transport induced by the hurricane are results from these structures within the flow. Boundaries of the coherent structures are highlighted by the FTLE field. Individual particle transport within the hurricane is affected by the location of these boundaries. In addition to idealized fluid particles, we also studied inertial particles which have finite size and inertia. Basing on established Maxey-Riley equations of the dynamics of particles of finite size, we obtain a reduced equation governing the position process. Using methods derived from computer graphics, we identify maximizers of the FTLE field. Following and applying these ideas, we analyze the dynamics of inertial particle transport within Hurricane Katrina, through comparison of trajectories of dierent sized particles and by pinpointing the location of the Lagrangian Coherent Structures.
ContributorsWake, Christian (Author) / Tang, Wenbo (Thesis director) / Moustaoui, Mohamed (Committee member) / Kostelich, Eric (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
Description

A statistical method is proposed to learn what the diffusion coefficient is at any point in space of a cell membrane. The method used bayesian non-parametrics to learn this value. Learning the diffusion coefficient might be useful for understanding more about cellular dynamics.

ContributorsGallimore, Austin Lee (Author) / Presse, Steve (Thesis director) / Armbruster, Dieter (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Over time, tumor treatment resistance inadvertently develops when androgen de-privation therapy (ADT) is applied to metastasized prostate cancer (PCa). To combat tumor resistance, while reducing the harsh side effects of hormone therapy, the clinician may opt to cyclically alternates the patient’s treatment on and off. This method,known as intermittent ADT,

Over time, tumor treatment resistance inadvertently develops when androgen de-privation therapy (ADT) is applied to metastasized prostate cancer (PCa). To combat tumor resistance, while reducing the harsh side effects of hormone therapy, the clinician may opt to cyclically alternates the patient’s treatment on and off. This method,known as intermittent ADT, is an alternative to continuous ADT that improves the patient’s quality of life while testosterone levels recover between cycles. In this paper,we explore the response of intermittent ADT to metastasized prostate cancer by employing a previously clinical data validated mathematical model to new clinical data from patients undergoing Abiraterone therapy. This cell quota model, a system of ordinary differential equations constructed using Droop’s nutrient limiting theory, assumes the tumor comprises of castration-sensitive (CS) and castration-resistant (CR)cancer sub-populations. The two sub-populations rely on varying levels of intracellular androgen for growth, death and transformation. Due to the complexity of the model,we carry out sensitivity analyses to study the effect of certain parameters on their outputs, and to increase the identifiability of each patient’s unique parameter set. The model’s forecasting results show consistent accuracy for patients with sufficient data,which means the model could give useful information in practice, especially to decide whether an additional round of treatment would be effective.

ContributorsBennett, Justin Klark (Author) / Kuang, Yang (Thesis director) / Kostelich, Eric (Committee member) / Phan, Tin (Committee member) / School of Mathematical and Statistical Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
Glioblastoma Multiforme is a prevalent and aggressive brain tumor. It has an average 5-year survival rate of 6% and average survival time of 14 months. Using patient-specific MRI data from the Barrow Neurological Institute, this thesis investigates the impact of parameter manipulation on reaction-diffusion models for predicting and simulating glioblastoma

Glioblastoma Multiforme is a prevalent and aggressive brain tumor. It has an average 5-year survival rate of 6% and average survival time of 14 months. Using patient-specific MRI data from the Barrow Neurological Institute, this thesis investigates the impact of parameter manipulation on reaction-diffusion models for predicting and simulating glioblastoma growth. The study aims to explore key factors influencing tumor morphology and to contribute to enhancing prediction techniques for treatment.
ContributorsShayegan, Tara (Author) / Kostelich, Eric (Thesis director) / Kuang, Yang (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2024-05
Description

In the last two decades, fantasy sports have grown massively in popularity. Fantasy football in particular is the most popular fantasy sport in the United States. People spend hours upon hours every year building, researching, and perfecting their teams to compete with others for money or bragging rights. One problem,

In the last two decades, fantasy sports have grown massively in popularity. Fantasy football in particular is the most popular fantasy sport in the United States. People spend hours upon hours every year building, researching, and perfecting their teams to compete with others for money or bragging rights. One problem, however, is that National Football League (NFL) players are human and will not perform the same as they did last week or last season. Because of this, there is a need to create a machine learning model to help predict when players will have a tough game or when they can perform above average. This report discusses the history and science of fantasy football, gathering large amounts of player data, manipulating the information to create more insightful data points, creating a machine learning model, and how to use this tool in a real-world situation. The initial model created significantly accurate predictions for quarterbacks and running backs but not receivers and tight ends. Improvements significantly increased the accuracy by reducing the mean average error to below one for all positions, resulting in a successful model for all four positions.

ContributorsCase, Spencer (Author) / Johnson, Jarod (Co-author) / Kostelich, Eric (Thesis director) / Zhuang, Houlong (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description

The main purpose of this project is to create a method for determining the absolute position of an accelerometer. Acceleration and angular speed were obtained from an accelerometer attached to a vehicle as it moves around. As the vehicle moves to collect information the orientation of the accelerometer changes, so

The main purpose of this project is to create a method for determining the absolute position of an accelerometer. Acceleration and angular speed were obtained from an accelerometer attached to a vehicle as it moves around. As the vehicle moves to collect information the orientation of the accelerometer changes, so a rotation matrix is applied to the data based on the angular change at each time. The angular change and distance are obtained by using the trapezoidal approximation of the integrals. This method was first validated by using simple sets of "true" data which are explicitly known sets of data to compare the results to. Then, an analysis of how different time steps and levels of noise affect the error of the results was performed to determine the optimal time step of 0.1 sec that was then used for the actual tests. The tests that were performed were: a stationary test for uses of calibration, a straight line test to verify a simple test, and a closed loop test to test the accuracy. The graphs for these tests give no indication of the actual paths, so the final results can only show that the data from the accelerometer is too noisy and inaccurate for this method to be used by this sensor. The future work would be to test different ways to get more accurate data and then use it to verify this methods. These ways could include using more sensors to interpolate the data, reducing noise by using a different sensor, or adding a filter. Then, if this method is considered accurate enough, it could be implemented into control systems.

ContributorsHorner, Devon (Author) / Kostelich, Eric (Thesis director) / Crook, Sharon (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2023-05
Description

We attempt to analyze the effect of fatigue on free throw efficiency in the National Basketball Association (NBA) using play-by-play data from regular-season, regulation-length games in the 2016-2017, 2017-2018, and 2018-2019 seasons. Using both regression and tree-based statistical methods, we analyze the relationship between minutes played total and minutes played

We attempt to analyze the effect of fatigue on free throw efficiency in the National Basketball Association (NBA) using play-by-play data from regular-season, regulation-length games in the 2016-2017, 2017-2018, and 2018-2019 seasons. Using both regression and tree-based statistical methods, we analyze the relationship between minutes played total and minutes played continuously at the time of free throw attempts on players' odds of making an attempt, while controlling for prior free throw shooting ability, longer-term fatigue, and other game factors. Our results offer strong evidence that short-term activity after periods of inactivity positively affects free throw efficiency, while longer-term fatigue has no effect.

ContributorsRisch, Oliver (Author) / Armbruster, Dieter (Thesis director) / Hahn, P. Richard (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
Prostate cancer is the second most common kind of cancer in men. Fortunately, it has a 99% survival rate. To achieve such a survival rate, a variety of aggressive therapies are used to treat prostate cancers that are caught early. Androgen deprivation therapy (ADT) is a therapy that is given

Prostate cancer is the second most common kind of cancer in men. Fortunately, it has a 99% survival rate. To achieve such a survival rate, a variety of aggressive therapies are used to treat prostate cancers that are caught early. Androgen deprivation therapy (ADT) is a therapy that is given in cycles to patients. This study attempted to analyze what factors in a group of 79 patients caused them to stick with or discontinue the treatment. This was done using naïve Bayes classification, a machine-learning algorithm. The usage of this algorithm identified high testosterone as an indicator of a patient persevering with the treatment, but failed to produce statistically significant high rates of prediction.
ContributorsMillea, Timothy Michael (Author) / Kostelich, Eric (Thesis director) / Kuang, Yang (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
Glioblastoma Multiforme (GBM) is an aggressive and deadly form of brain cancer with a median survival time of about a year with treatment. Due to the aggressive nature of these tumors and the tendency of gliomas to follow white matter tracks in the brain, each tumor mass has a unique

Glioblastoma Multiforme (GBM) is an aggressive and deadly form of brain cancer with a median survival time of about a year with treatment. Due to the aggressive nature of these tumors and the tendency of gliomas to follow white matter tracks in the brain, each tumor mass has a unique growth pattern. Consequently it is difficult for neurosurgeons to anticipate where the tumor will spread in the brain, making treatment planning difficult. Archival patient data including MRI scans depicting the progress of tumors have been helpful in developing a model to predict Glioblastoma proliferation, but limited scans per patient make the tumor growth rate difficult to determine. Furthermore, patient treatment between scan points can significantly compound the challenge of accurately predicting the tumor growth. A partnership with Barrow Neurological Institute has allowed murine studies to be conducted in order to closely observe tumor growth and potentially improve the current model to more closely resemble intermittent stages of GBM growth without treatment effects.
ContributorsSnyder, Lena Haley (Author) / Kostelich, Eric (Thesis director) / Frakes, David (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05