Matching Items (76)
Description

A statistical method is proposed to learn what the diffusion coefficient is at any point in space of a cell membrane. The method used bayesian non-parametrics to learn this value. Learning the diffusion coefficient might be useful for understanding more about cellular dynamics.

ContributorsGallimore, Austin Lee (Author) / Presse, Steve (Thesis director) / Armbruster, Dieter (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
The performance of modern machine learning algorithms depends upon the selection of a set of hyperparameters. Common examples of hyperparameters are learning rate and the number of layers in a dense neural network. Auto-ML is a branch of optimization that has produced important contributions in this area. Within Auto-ML, multi-fidelity approaches, which eliminate poorly-performing

The performance of modern machine learning algorithms depends upon the selection of a set of hyperparameters. Common examples of hyperparameters are learning rate and the number of layers in a dense neural network. Auto-ML is a branch of optimization that has produced important contributions in this area. Within Auto-ML, multi-fidelity approaches, which eliminate poorly-performing configurations after evaluating them at low budgets, are among the most effective. However, the performance of these algorithms strongly depends on how effectively they allocate the computational budget to various hyperparameter configurations. We first present Parameter Optimization with Conscious Allocation 1.0 (POCA 1.0), a hyperband- based algorithm for hyperparameter optimization that adaptively allocates the inputted budget to the hyperparameter configurations it generates following a Bayesian sampling scheme. We then present its successor Parameter Optimization with Conscious Allocation 2.0 (POCA 2.0), which follows POCA 1.0’s successful philosophy while utilizing a time-series model to reduce wasted computational cost and providing a more flexible framework. We compare POCA 1.0 and 2.0 to its nearest competitor BOHB at optimizing the hyperparameters of a multi-layered perceptron and find that both POCA algorithms exceed BOHB in low-budget hyperparameter optimization while performing similarly in high-budget scenarios.
ContributorsInman, Joshua (Author) / Sankar, Lalitha (Thesis director) / Pedrielli, Giulia (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor)
Created2024-05
Description

We attempt to analyze the effect of fatigue on free throw efficiency in the National Basketball Association (NBA) using play-by-play data from regular-season, regulation-length games in the 2016-2017, 2017-2018, and 2018-2019 seasons. Using both regression and tree-based statistical methods, we analyze the relationship between minutes played total and minutes played

We attempt to analyze the effect of fatigue on free throw efficiency in the National Basketball Association (NBA) using play-by-play data from regular-season, regulation-length games in the 2016-2017, 2017-2018, and 2018-2019 seasons. Using both regression and tree-based statistical methods, we analyze the relationship between minutes played total and minutes played continuously at the time of free throw attempts on players' odds of making an attempt, while controlling for prior free throw shooting ability, longer-term fatigue, and other game factors. Our results offer strong evidence that short-term activity after periods of inactivity positively affects free throw efficiency, while longer-term fatigue has no effect.

ContributorsRisch, Oliver (Author) / Armbruster, Dieter (Thesis director) / Hahn, P. Richard (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
Analytic research on basketball games is growing quickly, specifically in the National Basketball Association. This paper explored the development of this analytic research and discovered that there has been a focus on individual player metrics and a dearth of quantitative team characterizations and evaluations. Consequently, this paper continued the exploratory

Analytic research on basketball games is growing quickly, specifically in the National Basketball Association. This paper explored the development of this analytic research and discovered that there has been a focus on individual player metrics and a dearth of quantitative team characterizations and evaluations. Consequently, this paper continued the exploratory research of Fewell and Armbruster's "Basketball teams as strategic networks" (2012), which modeled basketball teams as networks and used metrics to characterize team strategy in the NBA's 2010 playoffs. Individual players and outcomes were nodes and passes and actions were the links. This paper used data that was recorded from playoff games of the two 2012 NBA finalists: the Miami Heat and the Oklahoma City Thunder. The same metrics that Fewell and Armbruster used were explained, then calculated using this data. The offensive networks of these two teams during the playoffs were analyzed and interpreted by using other data and qualitative characterization of the teams' strategies; the paper found that the calculated metrics largely matched with our qualitative characterizations of the teams. The validity of the metrics in this paper and Fewell and Armbruster's paper was then discussed, and modeling basketball teams as multiple-order Markov chains rather than as networks was explored.
ContributorsMohanraj, Hariharan (Co-author) / Choi, David (Co-author) / Armbruster, Dieter (Thesis director) / Fewell, Jennifer (Committee member) / Brooks, Daniel (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2013-05
Description
Dividing the plane in half leaves every border point of one region a border point of both regions. Can we divide up the plane into three or more regions such that any point on the boundary of at least one region is on the border of all the regions? In

Dividing the plane in half leaves every border point of one region a border point of both regions. Can we divide up the plane into three or more regions such that any point on the boundary of at least one region is on the border of all the regions? In fact, it is possible to design a dynamical system for which the basins of attractions have this Wada property. In certain circumstances, both the Hénon map, a simple system, and the forced damped pendulum, a physical model, produce Wada basins.
ContributorsWhitehurst, Ryan David (Author) / Kostelich, Eric (Thesis director) / Jones, Donald (Committee member) / Armbruster, Dieter (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2013-05
Description
This paper intends to analyze the Phoenix Suns' shooting patterns in real NBA games, and compare them to the "NBA 2k16" Suns' shooting patterns. Data was collected from the first five Suns' games of the 2015-2016 season and the same games played in "NBA 2k16". The findings of this paper

This paper intends to analyze the Phoenix Suns' shooting patterns in real NBA games, and compare them to the "NBA 2k16" Suns' shooting patterns. Data was collected from the first five Suns' games of the 2015-2016 season and the same games played in "NBA 2k16". The findings of this paper indicate that "NBA 2k16" utilizes statistical findings to model their gameplay. It was also determined that "NBA 2k16" modeled the shooting patterns of the Suns in the first five games of the 2015-2016 season very closely. Both, the real Suns' games and the "NBA 2k16" Suns' games, showed a higher probability of success for shots taken in the first eight seconds of the shot clock than the last eight seconds of the shot clock. Similarly, both game types illustrated a trend that the probability of success for a shot increases as a player holds onto a ball longer. This result was not expected for either game type, however, "NBA 2k16" modeled the findings consistent with real Suns' games. The video game modeled the Suns with significantly more passes per possession than the real Suns' games, while they also showed a trend that more passes per possession has a significant effect on the outcome of the shot. This trend was not present in the real Suns' games, however literature supports this finding. Also, "NBA 2k16" did not correctly model the allocation of team shots for each player, however, the differences were found only in bench players. Lastly, "NBA 2k16" did not correctly allocate shots across the seven regions for Eric Bledsoe, however, there was no evidence indicating that the game did not correctly model the allocation of shots for the other starters, as well as the probability of success across the regions.
ContributorsHarrington, John P. (Author) / Armbruster, Dieter (Thesis director) / Kamarianakis, Ioannis (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
Factory production is stochastic in nature with time varying input and output processes that are non-stationary stochastic processes. Hence, the principle quantities of interest are random variables. Typical modeling of such behavior involves numerical simulation and statistical analysis. A deterministic closure model leading to a second

Factory production is stochastic in nature with time varying input and output processes that are non-stationary stochastic processes. Hence, the principle quantities of interest are random variables. Typical modeling of such behavior involves numerical simulation and statistical analysis. A deterministic closure model leading to a second order model for the product density and product speed has previously been proposed. The resulting partial differential equations (PDE) are compared to discrete event simulations (DES) that simulate factory production as a time dependent M/M/1 queuing system. Three fundamental scenarios for the time dependent influx are studied: An instant step up/down of the mean arrival rate; an exponential step up/down of the mean arrival rate; and periodic variation of the mean arrival rate. It is shown that the second order model, in general, yields significant improvement over current first order models. Specifically, the agreement between the DES and the PDE for the step up and for periodic forcing that is not too rapid is very good. Adding diffusion to the PDE further improves the agreement. The analysis also points to fundamental open issues regarding the deterministic modeling of low signal-to-noise ratio for some stochastic processes and the possibility of resonance in deterministic models that is not present in the original stochastic process.
ContributorsWienke, Matthew (Author) / Armbruster, Dieter (Thesis advisor) / Jones, Donald (Committee member) / Platte, Rodrigo (Committee member) / Gardner, Carl (Committee member) / Ringhofer, Christian (Committee member) / Arizona State University (Publisher)
Created2015
Description
The large distributed electric power system is a hierarchical network involving the

transportation of power from the sources of power generation via an intermediate

densely connected transmission network to a large distribution network of end-users

at the lowest level of the hierarchy. At each level of the hierarchy (generation/ trans-

mission/ distribution), the system

The large distributed electric power system is a hierarchical network involving the

transportation of power from the sources of power generation via an intermediate

densely connected transmission network to a large distribution network of end-users

at the lowest level of the hierarchy. At each level of the hierarchy (generation/ trans-

mission/ distribution), the system is managed and monitored with a combination of

(a) supervisory control and data acquisition (SCADA); and (b) energy management

systems (EMSs) that process the collected data and make control and actuation de-

cisions using the collected data. However, at all levels of the hierarchy, both SCADA

and EMSs are vulnerable to cyber attacks. Furthermore, given the criticality of the

electric power infrastructure, cyber attacks can have severe economic and social con-

sequences.

This thesis focuses on cyber attacks on SCADA and EMS at the transmission

level of the electric power system. The goal is to study the consequences of three

classes of cyber attacks that can change topology data. These classes include: (i)

unobservable state-preserving cyber attacks that only change the topology data; (ii)

unobservable state-and-topology cyber-physical attacks that change both states and

topology data to enable a coordinated physical and cyber attack; and (iii) topology-

targeted man-in-the-middle (MitM) communication attacks that alter topology data

shared during inter-EMS communication. Specically, attack class (i) and (ii) focus on

the unobservable attacks on single regional EMS while class (iii) focuses on the MitM

attacks on communication links between regional EMSs. For each class of attacks,

the theoretical attack model and the implementation of attacks are provided, and the

worst-case attack and its consequences are exhaustively studied. In particularly, for

class (ii), a two-stage optimization problem is introduced to study worst-case attacks

that can cause a physical line over

ow that is unobservable in the cyber layer. The long-term implication and the system anomalies are demonstrated via simulation.

For attack classes (i) and (ii), both mathematical and experimental analyses sug-

gest that these unobservable attacks can be limited or even detected with resiliency

mechanisms including load monitoring, anomalous re-dispatches checking, and his-

torical data comparison. For attack class (iii), countermeasures including anomalous

tie-line interchange verication, anomalous re-dispatch alarms, and external contin-

gency lists sharing are needed to thwart such attacks.
ContributorsZhang, Jiazi (Author) / Sankar, Lalitha (Thesis advisor) / Hedman, Kory (Committee member) / Kosut, Oliver (Committee member) / Arizona State University (Publisher)
Created2015
Description
Modern measurement schemes for linear dynamical systems are typically designed so that different sensors can be scheduled to be used at each time step. To determine which sensors to use, various metrics have been suggested. One possible such metric is the observability of the system. Observability is a binary condition

Modern measurement schemes for linear dynamical systems are typically designed so that different sensors can be scheduled to be used at each time step. To determine which sensors to use, various metrics have been suggested. One possible such metric is the observability of the system. Observability is a binary condition determining whether a finite number of measurements suffice to recover the initial state. However to employ observability for sensor scheduling, the binary definition needs to be expanded so that one can measure how observable a system is with a particular measurement scheme, i.e. one needs a metric of observability. Most methods utilizing an observability metric are about sensor selection and not for sensor scheduling. In this dissertation we present a new approach to utilize the observability for sensor scheduling by employing the condition number of the observability matrix as the metric and using column subset selection to create an algorithm to choose which sensors to use at each time step. To this end we use a rank revealing QR factorization algorithm to select sensors. Several numerical experiments are used to demonstrate the performance of the proposed scheme.
ContributorsIlkturk, Utku (Author) / Gelb, Anne (Thesis advisor) / Platte, Rodrigo (Thesis advisor) / Cochran, Douglas (Committee member) / Renaut, Rosemary (Committee member) / Armbruster, Dieter (Committee member) / Arizona State University (Publisher)
Created2015
Description
Understanding the graphical structure of the electric power system is important

in assessing reliability, robustness, and the risk of failure of operations of this criti-

cal infrastructure network. Statistical graph models of complex networks yield much

insight into the underlying processes that are supported by the network. Such gen-

erative graph models are also

Understanding the graphical structure of the electric power system is important

in assessing reliability, robustness, and the risk of failure of operations of this criti-

cal infrastructure network. Statistical graph models of complex networks yield much

insight into the underlying processes that are supported by the network. Such gen-

erative graph models are also capable of generating synthetic graphs representative

of the real network. This is particularly important since the smaller number of tradi-

tionally available test systems, such as the IEEE systems, have been largely deemed

to be insucient for supporting large-scale simulation studies and commercial-grade

algorithm development. Thus, there is a need for statistical generative models of

electric power network that capture both topological and electrical properties of the

network and are scalable.

Generating synthetic network graphs that capture key topological and electrical

characteristics of real-world electric power systems is important in aiding widespread

and accurate analysis of these systems. Classical statistical models of graphs, such as

small-world networks or Erd}os-Renyi graphs, are unable to generate synthetic graphs

that accurately represent the topology of real electric power networks { networks

characterized by highly dense local connectivity and clustering and sparse long-haul

links.

This thesis presents a parametrized model that captures the above-mentioned

unique topological properties of electric power networks. Specically, a new Cluster-

and-Connect model is introduced to generate synthetic graphs using these parameters.

Using a uniform set of metrics proposed in the literature, the accuracy of the proposed

model is evaluated by comparing the synthetic models generated for specic real

electric network graphs. In addition to topological properties, the electrical properties

are captured via line impedances that have been shown to be modeled reliably by well-studied heavy tailed distributions. The details of the research, results obtained and

conclusions drawn are presented in this document.
ContributorsHu, Jiale (Author) / Sankar, Lalitha (Thesis advisor) / Vittal, Vijay (Committee member) / Scaglione, Anna (Committee member) / Arizona State University (Publisher)
Created2015