Perfection is extremely difficult to achieve when playing team sports. This is especially true for lacrosse, a sport where dropped passes, missed shots and turnovers are prevalent even at the college and professional levels of the game. In order to improve on mistakes, teams must first recognize where the errors are being made. The purpose of this project is to implement the DMAIC process improvement method into lacrosse, with the goal of identifying and implementing improvements, leading to a more successful team.
In order to use DMAIC, lacrosse was expressed as a process that included five phases: offense, defense, riding, clearing and faceoffs. Data was gathered for each phase using game film from the Arizona State Men’s Club Lacrosse Team over the course of the 2019 and 2020 seasons. The data was then analyzed by comparing the output statistics of each phase to the goal differential, number of goals scored, and number of goals against. Once the areas of improvement were determined, additional analysis was done to determine why these certain areas needed improvement. The results provided what changes needed to be made in order to improve the team. In order to ensure the team sustained their success, control measures were put in place to determine what action needs to be taken and when.


The first model offers an alternative formulation to the traditional choice-based revenue management problem presented in the literature, and provides substantial gains in expected revenue while limiting the problem’s computational complexity. Making assumptions on passenger demand, the Choice-based Mixed Integer Program (CMIP) provides a significantly more compact formulation when compared to other choice-based revenue management models, and consistently outperforms previous models.
Despite the prevalence of choice-based revenue management models in literature, the assumptions made on purchasing behavior inhibit researchers to create models that properly reflect passenger sensitivities to various ticket attributes, such as price, number of stops, and flexibility options. This dissertation introduces a general framework for airline choice-based demand modeling that takes into account various ticket attributes in addition to price, providing a framework for revenue management models to relate airline companies’ product design strategies to the practice of revenue management through decisions on ticket availability and price.
Finally, this dissertation introduces a mixed integer non-linear programming formulation for airline revenue management that accommodates the possibility of simultaneously setting prices and availabilities on a network. Traditional revenue management models primarily focus on availability, only, forcing secondary models to optimize prices. The Price-dynamic Choice-based Mixed Integer Program (PCMIP) eliminates this two-step process, aligning passenger purchase behavior with revenue management policies, and is shown to outperform previously developed models, providing a new frontier of research in airline revenue management.

In order to design these systems, the Reliability-Based Design Optimization framework using Sequential Optimization and Reliability Assessment (SORA) method is developed. The dynamic nature of component failure probability is considered in the system reliability model. The Stress-Strength Interference (SSI) theory is used to build the limit state functions of components and the First Order Reliability Method (FORM) lies at the heart of reliability assessment. Also, in situations where the user needs to determine the optimum number of components and reduce component redundancy, this method can be used to optimally allocate the required number of components to carry the system load. The main advantage of this method is that the computational efficiency is high and also any optimization and reliability assessment technique can be incorporated. Different cases of numerical examples are provided to validate the methodology.

Macroscopic traffic flow models describe the evolution of aggregated traffic characteristics over time and space, which are required by model-based traffic estimation approaches. Since current first-order Lagrangian macroscopic traffic flow model has some unrealistic implicit assumptions (e.g., infinite acceleration), a second-order Lagrangian macroscopic traffic flow model has been developed by incorporating drivers’ anticipation and reaction delay. A multi-sensor extended Kalman filter (MEKF) algorithm has been developed to combine heterogeneous measurements from multiple sources. A MEKF-based traffic estimator, explicitly using the developed second-order traffic flow model and measurements from loop detectors as well as GPS trajectories for given fractions of vehicles, has been proposed which gives real-time link-level traffic estimates in the bi-level estimation system.
The lane-level estimation in the bi-level data fusion system uses the link-level estimates as priors and adopts a data-driven approach to obtain lane-based estimates, where now heterogeneous multi-sensor measurements are combined using parallel spatial-temporal filters.
Experimental analysis shows that the second-order model can more realistically reproduce real world traffic flow patterns (e.g., stop-and-go waves). The MEKF-based link-level estimator exhibits more accurate results than the estimator that uses only a single data source. Evaluation of the lane-level estimator demonstrates that the proposed new bi-level multi-sensor data fusion system can provide very good estimates of real-time lane-based traffic conditions.

This research develops a generalized four-phased system for small blob detections. The system includes (1) raw image transformation, (2) Hessian pre-segmentation, (3) feature extraction and (4) unsupervised clustering for post-pruning. First, detecting blobs from 2D images is studied where a Hessian-based Laplacian of Gaussian (HLoG) detector is proposed. Using the scale space theory as foundation, the image is smoothed via LoG. Hessian analysis is then launched to identify the single optimal scale based on which a pre-segmentation is conducted. Novel Regional features are extracted from pre-segmented blob candidates and fed to Variational Bayesian Gaussian Mixture Models (VBGMM) for post pruning. Sixteen cell histology images and two hundred cell fluorescent images are tested to demonstrate the performances of HLoG. Next, as an extension, Hessian-based Difference of Gaussians (HDoG) is proposed which is capable to identify the small blobs from 3D images. Specifically, kidney glomeruli segmentation from 3D MRI (6 rats, 3 humans) is investigated. The experimental results show that HDoG has the potential to automatically detect glomeruli, enabling new measurements of renal microstructures and pathology in preclinical and clinical studies. Realizing the computation time is a key factor impacting the clinical adoption, the last phase of this research is to investigate the data reduction technique for VBGMM in HDoG to handle large-scale datasets. A new coreset algorithm is developed for variational Bayesian mixture models. Using the same MRI dataset, it is observed that the four-phased system with coreset-VBGMM has similar performance as using the full dataset but about 20 times faster.



