Toy hacks modify commercially available toys to be more easily used by people with motor disabilities, and donate them to schools, families, or toy libraries. Switch-adapting a toy adds an audio jack to allow an assistive technology (AT) switch to be plugged in. Switch-adapted toys help children develop essential skills through play. Hacking toys is helpful because toys that come with AT switches are often significantly more expensive than their unadapted counterparts. Toy hacks are also an opportunity to teach and practice engineering skills such as soldering and technical problem solving. Many resources are available online to assist makers with hosting toy hacks, but most of them lack information on holding the event. To fill this gap, the authors created a toy hack guide website, drawing from experience hosting two toy hacks. It walks users through steps like choosing the size of the event, the materials that need to be purchased, and connects them to other existing resources. In the future, it will be used to help people host more successful toy hacks.
During a joint ASU-Prescott College visit to the Maasai Mara in Kenya in June-July 2018, it became obvious that many Maasai women produce beadwork sold locally to help support their families. The difficulties they face include inconsistent sales due to lack of customers, lulls in tourism, and unfair competition. During this visit, the idea of selling the crafts online via Etsy was suggested. It received overwhelming support from the community through MERC, the The Maasai Education, Research and Conservation Institute.
In this paper, we discuss the methods and requirements to simulate a soft bodied beam using traditional rigid body kinematics to produce motion inspired by eels. Eels produce a form of undulatory locomotion called anguilliform locomotion that propagates waves throughout the entire body. The system that we are analyzing is a flexible 3D printed beam being actively driven by a servo motor. Using the simulation, we also analyze different parameters for these spines to maximize the linear speed of the system.
After the wind tunnels in the SIM building and Innovation Hub were donated or lost, Dr. Rajadas requested a new wind tunnel be designed, developed, and fabricated using facilities and resources available on ASU Polytech. Over 6 months, a single student was tasked with running the CAD modeling process, undergoing the revision stages, and welding/fabricating the tunnel by the end of Fall 2021.
With FDM printing becoming ubiquitous within the commercial and private sectors, there are many who would want to print a part without supports for a variety of reasons. Usually, they want to prints a part with difficult to reach places that would make it impossible to remove any support material without damaging the part. I will be going over options to consider when designing parts to ensure a given model will be able to be printed without support material.