Cryptojacking is a process in which a program utilizes a user’s CPU to mine cryptocurrencies unknown to the user. Since cryptojacking is a relatively new problem and its impact is still limited, very little has been done to combat it. Multiple studies have been conducted where a cryptojacking detection system is implemented, but none of these systems have truly solved the problem. This thesis surveys existing studies and provides a classification and evaluation of each detection system with the aim of determining their pros and cons. The result of the evaluation indicates that it might be possible to bypass detection of existing systems by modifying the cryptojacking code. In addition to this classification, I developed an automatic code instrumentation program that replaces specific instructions with functionally similar sequences as a way to show how easy it is to implement simple obfuscation to bypass detection by existing systems.
Optimal foraging theory provides a suite of tools that model the best way that an animal will <br/>structure its searching and processing decisions in uncertain environments. It has been <br/>successful characterizing real patterns of animal decision making, thereby providing insights<br/>into why animals behave the way they do. However, it does not speak to how animals make<br/>decisions that tend to be adaptive. Using simulation studies, prior work has shown empirically<br/>that a simple decision-making heuristic tends to produce prey-choice behaviors that, on <br/>average, match the predicted behaviors of optimal foraging theory. That heuristic chooses<br/>to spend time processing an encountered prey item if that prey item's marginal rate of<br/>caloric gain (in calories per unit of processing time) is greater than the forager's<br/>current long-term rate of accumulated caloric gain (in calories per unit of total searching<br/>and processing time). Although this heuristic may seem intuitive, a rigorous mathematical<br/>argument for why it tends to produce the theorized optimal foraging theory behavior has<br/>not been developed. In this thesis, an analytical argument is given for why this<br/>simple decision-making heuristic is expected to realize the optimal performance<br/>predicted by optimal foraging theory. This theoretical guarantee not only provides support<br/>for why such a heuristic might be favored by natural selection, but it also provides<br/>support for why such a heuristic might a reliable tool for decision-making in autonomous<br/>engineered agents moving through theatres of uncertain rewards. Ultimately, this simple<br/>decision-making heuristic may provide a recipe for reinforcement learning in small robots<br/>with little computational capabilities.
The rampant occurrence of spam telephone calls shows a clear weakness of authentication and security in our telephone systems. The onset of cheap and effective voice over Internet Protocol (VoIP) technology is a major factor in this as our existing telephone ecosystem is virtually defenseless by many features of this technology. Our telephone systems have also suffered tremendously from a lack of a proper Caller ID verification system. Phone call spammers are able to mask their identities with relative ease by quickly editing their Caller ID. It will take a combination of unique innovations in implementing new authentication mechanisms in the telephone ecosystem, novel government regulation, and understanding how the people behind the spam phone calls themselves operate.<br/><br/>This study dives into the robocall ecosystem to find more about the humans behind spam telephone calls and the economic models they use. Understanding how the people behind robocalls work within their environments will allow for more insight into how the ecosystem works. The study looks at the human component of robocalls: what ways they benefit from conducting spam phone calls, patterns in how they identify which phone number to call, and how these people interact with each other within the telephone spam ecosystem. This information will be pivotal to educate consumers on how they should mitigate spam as well as for creating defensive systems. In this qualitative study, we have conducted numerous interviews with call center employees, have had participants fill out surveys, and garnered data through our CallFire integrated voice broadcast system. While the research is still ongoing, initial conclusions in my pilot study interview data point to promising transparency in how the voices behind these calls operate on both a small and large scale.
Robots are often used in long-duration scenarios, such as on the surface of Mars,where they may need to adapt to environmental changes. Typically, robots have been built specifically for single tasks, such as moving boxes in a warehouse or surveying construction sites. However, there is a modern trend away from human hand-engineering and toward robot learning. To this end, the ideal robot is not engineered,but automatically designed for a specific task. This thesis focuses on robots which learn path-planning algorithms for specific environments. Learning is accomplished via genetic programming. Path-planners are represented as Python code, which is optimized via Pareto evolution. These planners are encouraged to explore curiously and efficiently. This research asks the questions: “How can robots exhibit life-long learning where they adapt to changing environments in a robust way?”, and “How can robots learn to be curious?”.
Secure Scuttlebutt is a digital social network in which the network data is distributed among the users.<br/>This is done to secure several benefits, like offline browsing, censorship resistance, and to imitate natural social networks, but it comes with downsides, like the lack of an obvious implementation of a recommendation algorithm.<br/>This paper proposes Whuffie, an algorithm that tracks each user's reputation for having information that is interesting to a user using conditional probabilities.<br/>Some errors in the main Secure Scuttlebutt network prevent current large-scale testing of the usefulness of the algorithm, but testing on my own personal account led me to believe it a success.
Enantiomers are pairs of non-superimposable mirror-image molecules. One molecule in the pair is the clockwise version (+) while the other is the counterclockwise version (-). Some pairs have divergent odor qualities, e.g. L-carvone (“spearmint”) vs. D-carvone (“caraway”), while other pairs do not. Existing theory about the origin of such differences is largely qualitative (Friedman and Miller, 1971; Bentley, 2006; Brookes et al., 2008). While quantitative models based on intrinsic molecular features predict some structure–odor relationships (Keller et al., 2017), they cannot identify, e.g. the more intense enantiomer in a pair; the mathematical operations underlying such features are invariant under symmetry (Shadmany et al., 2018). Only the olfactory receptor (OR) can break this symmetry because each molecule within an enantiomeric pair will have a different binding configuration with a receptor. However, features that predict odor divergence within a pair may be identifiable; for example, six-membered ring flexibility has been offered as a candidate (Brookes et al., 2008). To address this problem, we collected detection threshold data for >400 molecules (organized into enantiomeric pairs) from a variety of public data sources and academic literature. From each pair, we computed the within-pair divergence in odor detection threshold, as well as Mordred descriptors (molecular features derived from the structure of a molecule) and Morgan fingerprints (mathematical representations of molecule structure). While these molecular features are identical within-pair (due to symmetry), they remain distinct across pairs. The resulting structure+perception dataset was used to build a predictive model of odor detection threshold divergence. It predicted a modest fraction of variance in odor detection threshold divergence (r 2 ~ 0.3 in cross-validation). We speculate that most of the remaining variance could be explained by a better understanding of the ligand-receptor binding process.