Filtering by
- Status: Published
Evaluating the Heterogeneity of Logistic Regression Models to Predict Coronary Artery Disease Status
Background: Creation and reuse of reliable clinical code sets could accelerate the use of EHR data for research. To support that vision, there is an imperative need for methodologically. driven, transparent and automatic approaches to create error-free clinical code sets. Objectives: Propose and evaluate an automatic, generalizable, and knowledge-based approach that uses as starting point a correct and complete knowledge base of ingredients (e.g., the US Drug Enforcement Administration Controlled Substance repository list includes fentanyl as an opioid) to create medication code sets (e.g., Abstral is an opioid medication with fentanyl as ingredient). Methods: Algorithms were written to convert lists of ingredients into medication code sets, where all the medications are codified in the RxNorm terminology, are active medications and have at least one ingredient from the ingredient list. Generalizability and accuracy of the methods was demonstrated by applying them to the discovery of opioid and anti-depressant medications. Results: Errors (39 (1.73%) and 13 (6.28%)), obsolete drugs (172 (7.61%) and 0 (0%)) and missing medications (1,587 (41.26%) and 1,456 (87.55%)) were found in publicly available opioid and antidepressant medication code sets, respectively. Conclusion: The proposed knowledge-based algorithms to discover correct, complete, and up to date ingredient-based medication code sets proved to be accurate and reusable. The resulting algorithms and code sets have been made publicly available for others to use.

The deluge of next-generation sequencing data nowadays has shifted the bottleneck of cancer research from multiple “-omics” data collection to integrative analysis and data interpretation. In this dissertation, I attempt to address two distinct, but dependent, challenges. The first is to design specific computational algorithms and tools that can process and extract useful information from the raw data in an efficient, robust, and reproducible manner. The second challenge is to develop high-level computational methods and data frameworks for integrating and interpreting these data. Specifically, Chapter 2 presents a tool called Snipea (SNv Integration, Prioritization, Ensemble, and Annotation) to further identify, prioritize and annotate somatic SNVs (Single Nucleotide Variant) called from multiple variant callers. Chapter 3 describes a novel alignment-based algorithm to accurately and losslessly classify sequencing reads from xenograft models. Chapter 4 describes a direct and biologically motivated framework and associated methods for identification of putative aberrations causing survival difference in GBM patients by integrating whole-genome sequencing, exome sequencing, RNA-Sequencing, methylation array and clinical data. Lastly, chapter 5 explores longitudinal and intratumor heterogeneity studies to reveal the temporal and spatial context of tumor evolution. The long-term goal is to help patients with cancer, particularly those who are in front of us today. Genome-based analysis of the patient tumor can identify genomic alterations unique to each patient’s tumor that are candidate therapeutic targets to decrease therapy resistance and improve clinical outcome.

The preferred method for polyp detection and removal is optical colonoscopy. A colonoscopic procedure consists of two phases: (1) insertion phase during which a flexible endoscope (a flexible tube with a tiny video camera at the tip) is advanced via the anus and then gradually to the end of the colon--called the cecum, and (2) withdrawal phase during which the endoscope is gradually withdrawn while colonoscopists examine the colon wall to find and remove polyps. Colonoscopy is an effective procedure and has led to a significant decline in the incidence and mortality of colon cancer. However, despite many screening and therapeutic advantages, 1 out of every 4 polyps and 1 out of 13 colon cancers are missed during colonoscopy.
There are many factors that contribute to missed polyps and cancers including poor colon preparation, inadequate navigational skills, and fatigue. Poor colon preparation results in a substantial portion of colon covered with fecal content, hindering a careful examination of the colon. Inadequate navigational skills can prevent a colonoscopist from examining hard-to-reach regions of the colon that may contain a polyp. Fatigue can manifest itself in the performance of a colonoscopist by decreasing diligence and vigilance during procedures. Lack of vigilance may prevent a colonoscopist from detecting the polyps that briefly appear in the colonoscopy videos. Lack of diligence may result in hasty examination of the colon that is likely to miss polyps and lesions.
To reduce polyp and cancer miss rates, this research presents a quality assurance system with 3 components. The first component is an automatic polyp detection system that highlights the regions with suspected polyps in colonoscopy videos. The goal is to encourage more vigilance during procedures. The suggested polyp detection system consists of several novel modules: (1) a new patch descriptor that characterizes image appearance around boundaries more accurately and more efficiently than widely-used patch descriptors such HoG, LBP, and Daisy; (2) A 2-stage classification framework that is able to enhance low level image features prior to classification. Unlike the traditional way of image classification where a single patch undergoes the processing pipeline, our system fuses the information extracted from a pair of patches for more accurate edge classification; (3) a new vote accumulation scheme that robustly localizes objects with curvy boundaries in fragmented edge maps. Our voting scheme produces a probabilistic output for each polyp candidate but unlike the existing methods (e.g., Hough transform) does not require any predefined parametric model of the object of interest; (4) and a unique three-way image representation coupled with convolutional neural networks (CNNs) for classifying the polyp candidates. Our image representation efficiently captures a variety of features such as color, texture, shape, and temporal information and significantly improves the performance of the subsequent CNNs for candidate classification. This contrasts with the exiting methods that mainly rely on a subset of the above image features for polyp detection. Furthermore, this research is the first to investigate the use of CNNs for polyp detection in colonoscopy videos.
The second component of our quality assurance system is an automatic image quality assessment for colonoscopy. The goal is to encourage more diligence during procedures by warning against hasty and low quality colon examination. We detect a low quality colon examination by identifying a number of consecutive non-informative frames in videos. We base our methodology for detecting non-informative frames on two key observations: (1) non-informative frames
most often show an unrecognizable scene with few details and blurry edges and thus their information can be locally compressed in a few Discrete Cosine Transform (DCT) coefficients; however, informative images include much more details and their information content cannot be summarized by a small subset of DCT coefficients; (2) information content is spread all over the image in the case of informative frames, whereas in non-informative frames, depending on image artifacts and degradation factors, details may appear in only a few regions. We use the former observation in designing our global features and the latter in designing our local image features. We demonstrated that the suggested new features are superior to the existing features based on wavelet and Fourier transforms.
The third component of our quality assurance system is a 3D visualization system. The goal is to provide colonoscopists with feedback about the regions of the colon that have remained unexamined during colonoscopy, thereby helping them improve their navigational skills. The suggested system is based on a new 3D reconstruction algorithm that combines depth and position information for 3D reconstruction. We propose to use a depth camera and a tracking sensor to obtain depth and position information. Our system contrasts with the existing works where the depth and position information are unreliably estimated from the colonoscopy frames. We conducted a use case experiment, demonstrating that the suggested 3D visualization system can determine the unseen regions of the navigated environment. However, due to technology limitations, we were not able to evaluate our 3D visualization system using a phantom model of the colon.
