Matching Items (800)
Filtering by

Clear all filters

Description
Previous research has yielded an equivocal answer as to whether speaking aloud while performing intelligence tasks improves, impairs, or has no effect on performance. Some studies show that it impairs performance while others show it aids performance. In the studies in which speaking aloud has been shown to help, only

Previous research has yielded an equivocal answer as to whether speaking aloud while performing intelligence tasks improves, impairs, or has no effect on performance. Some studies show that it impairs performance while others show it aids performance. In the studies in which speaking aloud has been shown to help, only children and older adults benefitted. The present study investigated whether college-aged students benefit from speaking aloud while performing a fluid intelligence test. Subjects performed a battery of working memory and intelligence tasks silently. Once they had completed each task, the participants took them again, though this time they spoke aloud while completing the tests. Results showed that subjects did insignificantly worse on the working memory tests when speaking aloud. However, subjects performed significantly better on the measures of fluid intelligence while speaking aloud as opposed to doing them silently. At an individual differences level, low working memory capacity participants benefited more from speaking aloud than the high working memory ones. Finally, we found a positive correlation between working memory scores and fluid intelligence scores, offering further evidence that the two constructs are related, yet different.
ContributorsRice, Z. Douglas (Author) / Brewer, Gene (Thesis director) / Duch, Carsten (Committee member) / Ball, Hunter (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
Description
Prospective memory is defined as remembering to carry out specified actions in the future. Research has suggested that prospective memory retrieval is reliant on multiple cognitive processes to function, and the ways in which these different processes are used is dependent on a variety of variables relating to the prospective

Prospective memory is defined as remembering to carry out specified actions in the future. Research has suggested that prospective memory retrieval is reliant on multiple cognitive processes to function, and the ways in which these different processes are used is dependent on a variety of variables relating to the prospective memory task at hand. The current study focuses on the strength of the association between the prospective
memory cue and the prospective memory intention. Based on literature suggesting that aspects of prospective memory are reliant on executive control functioning, the current study examined the possibility that executive control depletion would affect prospective memory ability on subsequent tasks. Results showed that depletion of executive control resources, measured objectively, did not impair prospective memory in either a low or
high cue-association condition. However, participants‟ subjective assessment of their own fatigue correlated significantly with their subsequent prospective memory performance, regardless of association condition. The results of the study indicate that depletion studies that fail to account for both objective and subjective measures suffer from an unclear interpretation of effects, and that recognition of perceived expectancies
of cognitive resource limitation can assist in improving prospective memory ability.
ContributorsCook, Carson (Author) / Brewer, Gene (Thesis director) / Presson, Clark (Committee member) / Homa, Donald (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
Description

Affective computing allows computers to monitor and influence people’s affects, in other words emotions. Currently, there is a lot of research exploring what can be done with this technology. There are many fields, such as education, healthcare, and marketing, that this technology can transform. However, it is important to question

Affective computing allows computers to monitor and influence people’s affects, in other words emotions. Currently, there is a lot of research exploring what can be done with this technology. There are many fields, such as education, healthcare, and marketing, that this technology can transform. However, it is important to question what should be done. There are unique ethical considerations in regards to affective computing that haven't been explored. The purpose of this study is to understand the user’s perspective of affective computing in regards to the Association of Computing Machinery (ACM) Code of Ethics, to ultimately start developing a better understanding of these ethical concerns. For this study, participants were required to watch three different videos and answer a questionnaire, all while wearing an Emotiv EPOC+ EEG headset that measures their emotions. Using the information gathered, the study explores the ethics of affective computing through the user’s perspective.

ContributorsInjejikian, Angelica (Author) / Gonzalez-Sanchez, Javier (Thesis director) / Chavez-Echeagaray, Maria Elena (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Cryptojacking is a process in which a program utilizes a user’s CPU to mine cryptocurrencies unknown to the user. Since cryptojacking is a relatively new problem and its impact is still limited, very little has been done to combat it. Multiple studies have been conducted where a cryptojacking detection system

Cryptojacking is a process in which a program utilizes a user’s CPU to mine cryptocurrencies unknown to the user. Since cryptojacking is a relatively new problem and its impact is still limited, very little has been done to combat it. Multiple studies have been conducted where a cryptojacking detection system is implemented, but none of these systems have truly solved the problem. This thesis surveys existing studies and provides a classification and evaluation of each detection system with the aim of determining their pros and cons. The result of the evaluation indicates that it might be possible to bypass detection of existing systems by modifying the cryptojacking code. In addition to this classification, I developed an automatic code instrumentation program that replaces specific instructions with functionally similar sequences as a way to show how easy it is to implement simple obfuscation to bypass detection by existing systems.

ContributorsLarson, Kent Merle (Author) / Bazzi, Rida (Thesis director) / Shoshitaishvili, Yan (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a

This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a generator to attempt to satisfy the discriminator. The network design is described in further detail below; however there are several potential issues that arise including the averaging of a color for certain images such that small details in an image are not assigned unique colors leading to a neutral blend. We attempt to mitigate this issue as much as possible.

ContributorsMarkabawi, Jah (Co-author) / Masud, Abdullah (Co-author) / Lobo, Ian (Co-author) / Koleber, Keith (Co-author) / Yang, Yingzhen (Thesis director) / Wang, Yancheng (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a

This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a generator to attempt to satisfy the discriminator. The network design is described in further detail below; however there are several potential issues that arise including the averaging of a color for certain images such that small details in an image are not assigned unique colors leading to a neutral blend. We attempt to mitigate this issue as much as possible.

ContributorsMasud, Abdullah Bin (Co-author) / Koleber, Keith (Co-author) / Lobo, Ian (Co-author) / Markabawi, Jah (Co-author) / Yang, Yingzhen (Thesis director) / Wang, Yancheng (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The NCAA is changing the current rules and regulations around a student-athlete’s name, image, and likeness. Previously, student-athletes were not allowed to participate in business activities or noninstitutional promotional activities. With the new rule changes, student-athletes will be able to engage in business activities related to their own name, image,

The NCAA is changing the current rules and regulations around a student-athlete’s name, image, and likeness. Previously, student-athletes were not allowed to participate in business activities or noninstitutional promotional activities. With the new rule changes, student-athletes will be able to engage in business activities related to their own name, image, and likeness. The goal of the team was to help “prepare athletes to understand and properly navigate the evolving restrictions and guidelines around athlete name, image, and likeness”. In order to accomplish this, the team had to understand the problems student-athletes face with these changing rules and regulations. The team conducted basic market research to identify the problem. The problem discovered was the lack of communication between student-athletes and businesses. In order to verify this problem, the team conducted several interviews with Arizona State University Athletic Department personnel. From the interviews, the team identified that the user is the student-athletes and the buyer is the brands and businesses. Once the problem was verified and the user and buyer were identified, a solution that would best fit the customers was formulated. The solution is a platform that assists student-athletes navigate the changing rules of the NCAA by providing access to a marketplace optimized to working with student-athletes and offering an ease of maintaining relationships between student-athletes and businesses. The solution was validated through meetings with interested brands. The team used the business model and market potential to pitch the business idea to the brands. Finally, the team gained traction by initiating company partnerships.

ContributorsSchulte, Brooke (Co-author) / Recato, Bella (Co-author) / Winston, Blake (Co-author) / Byrne, Jared (Thesis director) / Lee, Christopher (Committee member) / Kunowski, Jeffrey (Committee member) / Computer Science and Engineering Program (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

A project about developing software for learning turned into a project for learning about software development. The submission here only includes the journal. However, the journal has a link to the public GitHub repository containing the source code for the thesis. The source code implements a program to facilitate self-study

A project about developing software for learning turned into a project for learning about software development. The submission here only includes the journal. However, the journal has a link to the public GitHub repository containing the source code for the thesis. The source code implements a program to facilitate self-study by allowing the user to create quizzes. The journal contains my experience working on the project (both successes and failures).

ContributorsRoper, Branden Gerald (Author) / Miller, Phillip (Thesis director) / Zazkis, Dov (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Education has been at the forefront of many issues in Arizona over the past several years with concerns over lack of funding sparking the Red for Ed movement. However, despite the push for educational change, there remain many barriers to education including a lack of visibility for how Arizona schools

Education has been at the forefront of many issues in Arizona over the past several years with concerns over lack of funding sparking the Red for Ed movement. However, despite the push for educational change, there remain many barriers to education including a lack of visibility for how Arizona schools are performing at a legislative district level. While there are sources of information released at a school district level, many of these are limited and can become obscure to legislators when such school districts lie on the boundary between 2 different legislative districts. Moreover, much of this information is in the form of raw spreadsheets and is often fragmented between government websites and educational organizations. As such, a visualization dashboard that clearly identifies schools and their relative performance within each legislative district would be an extremely valuable tool to legislative bodies and the Arizona public. Although this dashboard and research are rough drafts of a larger concept, they would ideally increase transparency regarding public information about these districts and allow legislators to utilize the dashboard as a tool for greater understanding and more effective policymaking.

ContributorsColyar, Justin Dallas (Author) / Michael, Katina (Thesis director) / Maciejewski, Ross (Committee member) / Tate, Luke (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

University Devils is a Founders Lab Thesis group looking to find a way for post-secondary institutions to increase the number of and diversity of incoming applications through the utilization of gaming and gaming approaches in the recruitment process while staying low-cost. This propelling question guided the group through their work.

University Devils is a Founders Lab Thesis group looking to find a way for post-secondary institutions to increase the number of and diversity of incoming applications through the utilization of gaming and gaming approaches in the recruitment process while staying low-cost. This propelling question guided the group through their work. The team’s work primarily focused on recruitment efforts at Arizona State University, but the concept can be modified and applied at other post-secondary institutions. The initial research showed that Arizona State University’s recruitment focused on visiting the high schools of prospective students and providing campus tours to interested students. A proposed alternative solution to aid in recruitment efforts through the utilization of gaming was to create an online multiplayer game that prospective students could play from their own homes. The basic premise of the game is that one player is selected to be “the Professor” while the other players are part of “the Students.” To complete the game, the Students must complete a set of tasks while the Professor applies various obstacles to prevent the Students from winning. When a Student completes their objectives, they win and the game ends. The game was created using Unity. The group has completed a proof-of-concept of the proposed game and worked to advertise and market the game to students via social media. The team’s efforts have gained traction, and the group continues to work to gain traction and bring the idea to more prospective students.

ContributorsDong, Edmund Engsun (Co-author) / Ouellette, Abigail (Co-author) / Cole, Tyler (Co-author) / Byrne, Jared (Thesis director) / Pierce, John (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05