Matching Items (55)
Filtering by

Clear all filters

Description
Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has

Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has been mostly ignored. Characterizing the influence of arm configuration (i.e. intrinsic factors) would allow greater comprehension of sensorimotor integration and assist in interpreting exaggerated movement variability in patients. In this study, subjects were placed in a 3-D virtual reality environment and were asked to move from a starting position to one of three targets in the frontal plane with and without visual feedback of the moving limb. The alternating of visual feedback during trials increased uncertainty between the planning and execution phases. The starting limb configurations, adducted and abducted, were varied in separate blocks. Arm configurations were setup by rotating along the shoulder-hand axis to maintain endpoint position. The investigation hypothesized: 1) patterns of endpoint variability of movements would be dependent upon the starting arm configuration and 2) any differences observed would be more apparent in conditions that withheld visual feedback. The results indicated that there were differences in endpoint variability between arm configurations in both visual conditions, but differences in variability increased when visual feedback was withheld. Overall this suggests that in the presence of visual feedback, planning of movements in 3D space mostly uses coordinates that are arm configuration independent. On the other hand, without visual feedback, planning of movements in 3D space relies substantially on intrinsic coordinates.
ContributorsRahman, Qasim (Author) / Buneo, Christopher (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
Description

This analysis explores what the time needed to harden, and time needed to degrade is of a PLGA bead, as well as whether the size of the needle injecting the bead and the addition of a drug (Vismodegib) may affect these variables. Polymer degradation and hardening are critical to understand

This analysis explores what the time needed to harden, and time needed to degrade is of a PLGA bead, as well as whether the size of the needle injecting the bead and the addition of a drug (Vismodegib) may affect these variables. Polymer degradation and hardening are critical to understand for the polymer’s use in clinical settings, as these factors help determine the patients’ and healthcare providers’ use of the drug and estimated treatment time. Based on the literature, it is expected that the natural logarithmic polymer mass degradation forms a linear relationship to time. Polymer hardening was tested by taking video recordings of gelatin plates as they are injected with microneedles and performing RGB analysis on the polymer “beads” created. Our results for the polymer degradation experiments showed that the polymer hardened for all solutions and trials within approximately 1 minute, presenting a small amount of time in which the patient would have to remain motionless in the affected area. Both polymer bead size and drug concentration may have had a modest impact on the hardening time experiments, while bead size may affect the time required for the polymer to degrade. Based on the results, the polymer degradation is expected to last multiple weeks, which may allow for the polymer to be used as a long-term drug delivery system in treatment of basal cell carcinoma.

ContributorsEltze, Maren Caterina (Author) / Vernon, Brent (Thesis director) / Buneo, Christopher (Committee member) / Harrington Bioengineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
The human hand relies on information from surrounding environment to distinguish objects based on qualities like size, texture, weight, and compliance. The size of an object can be determined from tactile feedback, proprioception, and visual feedback. This experiment aims to determine the accuracy of size discrimination in physical and virtual

The human hand relies on information from surrounding environment to distinguish objects based on qualities like size, texture, weight, and compliance. The size of an object can be determined from tactile feedback, proprioception, and visual feedback. This experiment aims to determine the accuracy of size discrimination in physical and virtual objects using proprioceptive and tactile feedback. Using both senses will help determine how much proprioceptive and tactile feedback plays a part in discriminating small size variations and whether replacing a missing sensation will increase the subject's accuracy. Ultimately, determining the specific contributions of tactile and proprioceptive feedback mechanisms during object manipulation is important in order to give prosthetic hand users the ability of stereognosis among other manipulation tasks. Two different experiments using physical and virtual objects were required to discover the roles of tactile and proprioceptive feedback. Subjects were asked to compare the size of one block to a previous object. The blocks increased in size by two millimeter increments and were randomized in order to determine whether subjects could correctly identify if a box was smaller, larger, or the same size as the previous box. In the proprioceptive experiment subjects had two sub-sets of experiments each with a different non-tactile cue. The experiment demonstrated that subjects performed better with physical objects compared to virtual objects. This suggests that size discrimination is possible in the absence of tactile feedback, but tactile input is necessary for accuracy in small size discrimination.
ContributorsFrear, Darcy Lynn (Author) / Helms Tillery, Stephen (Thesis director) / Buneo, Christopher (Committee member) / Overstreet, Cynthia (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
Description

Neuromodulation is an emerging field of research that has a proven therapeutic benefit on a number of neurological disorders, including epilepsy and stroke. It is characterized by using exogenous stimulation to modify neural activity. Prior studies have shown the positive effect of non-invasive trigeminal nerve stimulation (TNS) on motor learning.

Neuromodulation is an emerging field of research that has a proven therapeutic benefit on a number of neurological disorders, including epilepsy and stroke. It is characterized by using exogenous stimulation to modify neural activity. Prior studies have shown the positive effect of non-invasive trigeminal nerve stimulation (TNS) on motor learning. However, few studies have explored the effect of this specific neuromodulatory method on the underlying physiological processes, including heart rate variability (HRV), facial skin temperatures, skin conductance level, and respiratory rate. Here we present preliminary results of the effects of 3kHz supraorbital TNS on HRV using non-linear (Poincaré plot descriptors) and time-domain (SDNN) measures of analysis. Twenty-one (21) healthy adult subjects were randomly assigned to 2 groups: 3kHz Active stimulation (n=11) and Sham (n=10). Participants’ physiological markers were monitored continuously across three blocks: one ten-minute baseline block, one twenty-minute treatment block, and one ten-minute recovery block. TNS targeting the ophthalmic branches of the trigeminal nerve was delivered during the treatment block for twenty minutes in 30 sec. ON/OFF cycles. The active stimulation group exhibited larger values of all Poincaré descriptors and SDNN during blocks two and three, signifying increased HRV and autonomic nervous system activity.

ContributorsParmar, Romir (Author) / Buneo, Christopher (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2023-05
Description

Sensorimotor adaptation is a type of learning that allows sustaining accurate movements by adjusting motor output. This allows the brain to adapt to temporary changes when engaged in a certain task. Within sensorimotor adaptation, visuomotor adaptation (VMA) is one’s ability to correct a visual perturbation. In this study, we present

Sensorimotor adaptation is a type of learning that allows sustaining accurate movements by adjusting motor output. This allows the brain to adapt to temporary changes when engaged in a certain task. Within sensorimotor adaptation, visuomotor adaptation (VMA) is one’s ability to correct a visual perturbation. In this study, we present preliminary results on the effects of VMA with the control group, compared to groups undergoing trigeminal nerve stimulation (TNS) or SHAM (placebo) effects. Twenty-two healthy subjects with no past medical history participated in this study. Subjects performed a visuomotor rotation task, which required gradually adapting to a perturbation between hand motion and corresponding visual feedback. Five total blocks were completed: two familiarization blocks, one baseline block, one rotation block with a 30◦ counterclockwise rotation, and one washout block with no rotation. The control group performed better than the 120 Hz (TNS) and SHAM groups due to less directional error (DE) on the respective learning curves. Additionally, the control group adapted faster (less DE) than the SHAM groups that either felt stimulation, or did not feel the stimulation. The results yield new information regarding VMA which can be used in the future when comparing sensorimotor adaptation and its many applications.

ContributorsBass, Trevor (Author) / Buneo, Christopher (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
Description
Psychedelics have received attention in research due to their therapeutic potential, prompting a need for a deeper understanding of their effects. Perception, a cognitive process involving sensory stimuli and interpretation, is known to be altered by psychedelics. This project aims to investigate body image perception under psychedelics' influence, utilizing virtual

Psychedelics have received attention in research due to their therapeutic potential, prompting a need for a deeper understanding of their effects. Perception, a cognitive process involving sensory stimuli and interpretation, is known to be altered by psychedelics. This project aims to investigate body image perception under psychedelics' influence, utilizing virtual reality (VR) and motion capture technology. To validate findings and mitigate memory biases in the experiments by Helms-Tillery et al. (1991) VR can be employed to control stimuli and measure body location perception. Motion capture data serves as a reliable reference system, aiding in the translation of VR data. MATLAB scripts are developed to process motion capture data, defining body position accurately. Troubleshooting and debugging are crucial in ensuring data accuracy. The project culminates in a generalized code applicable to diverse experimental setups, facilitating spatial perception research and laying groundwork for psychedelic studies.
ContributorsBozzo, Isabella (Author) / Helms Tillery, Stephen (Thesis director) / Buneo, Christopher (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2024-05
Description

We describe a secondary analysis of an in vitro experiment that supports the capabilities of a relatively new imaging technique known as functional Magnetic Resonance Electrical Impedance Tomography (fMREIT) to detect conductivity changes in neural tissue caused by activity. Methods: Magnetic Resonance (MR) phase data of active Aplysia ganglia tissue

We describe a secondary analysis of an in vitro experiment that supports the capabilities of a relatively new imaging technique known as functional Magnetic Resonance Electrical Impedance Tomography (fMREIT) to detect conductivity changes in neural tissue caused by activity. Methods: Magnetic Resonance (MR) phase data of active Aplysia ganglia tissue in artificial seawater (ASW) were collected before and after exposure to an excitotoxin using two different imaging current strengths, and these data were then used to reconstruct conductivity changes throughout the tissue. Results: We found that increases in neural activity led to significant increases in imaged conductivity when using high imaging currents, but these differences in conductivity were not seen in regions that did not contain neural tissue nor in data where there were no differences in neural activity. Conclusion: We conclude that the analysis presented here supports fMREIT as a contrast technique capable of imaging neural activity in live tissue more directly than functional imaging methods such as BOLD fMRI.

ContributorsBarnett, Cole (Author) / Sadleir, Rosalind (Thesis director) / Buneo, Christopher (Committee member) / Bartelle, Benjamin (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05
Description
Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has

Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has been mostly ignored. Characterizing the influence of arm configuration (i.e. intrinsic factors) would allow greater comprehension of sensorimotor integration and assist in interpreting exaggerated movement variability in patients. In this study, subjects were placed in a 3-D virtual reality environment and were asked to move from a starting position to one of three targets in the frontal plane with and without visual feedback of the moving limb. The alternating of visual feedback during trials increased uncertainty between the planning and execution phases. The starting limb configurations, adducted and abducted, were varied in separate blocks. Arm configurations were setup by rotating along the shoulder-hand axis to maintain endpoint position. The investigation hypothesized: 1) patterns of endpoint variability of movements would be dependent upon the starting arm configuration and 2) any differences observed would be more apparent in conditions that withheld visual feedback. The results indicated that there were differences in endpoint variability between arm configurations in both visual conditions, but differences in variability increased when visual feedback was withheld. Overall this suggests that in the presence of visual feedback, planning of movements in 3D space mostly uses coordinates that are arm configuration independent. On the other hand, without visual feedback, planning of movements in 3D space relies substantially on intrinsic coordinates.
ContributorsRahman, Qasim (Author) / Buneo, Christopher (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
Description
The role of retention and forgetting of context dependent sensorimotor memory of dexterous manipulation was explored. Human subjects manipulated a U-shaped object by switching the handle to be grasped (context) three times, and then came back two weeks later to lift the same object in the opposite context relative to

The role of retention and forgetting of context dependent sensorimotor memory of dexterous manipulation was explored. Human subjects manipulated a U-shaped object by switching the handle to be grasped (context) three times, and then came back two weeks later to lift the same object in the opposite context relative to that experience on the last block. On each context switch, an interference of the previous block of trials was found resulting in manipulation errors (object tilt). However, no significant re-learning was found two weeks later for the first block of trials (p = 0.826), indicating that the previously observed interference among contexts lasted a very short time. Interestingly, upon switching to the other context, sensorimotor memories again interfered with visually-based planning. This means that the memory of lifting in the first context somehow blocked the memory of lifting in the second context. In addition, the performance in the first trial two weeks later and the previous trial of the same context were not significantly different (p = 0.159). This means that subjects are able to retain long-term sensorimotor memories. Lastly, the last four trials in which subjects switched contexts were not significantly different from each other (p = 0.334). This means that the interference from sensorimotor memories of lifting in opposite contexts was weaker, thus eventually leading to the attainment of steady performance.
ContributorsGaw, Nathan Benjamin (Author) / Santello, Marco (Thesis director) / Helms Tillery, Stephen (Committee member) / Buneo, Christopher (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
Description
Electromyography (EMG) is an extremely useful tool in extracting control signals from the human body. Needle electromyography is the current standard for obtaining superior quality muscle signals and obtaining signals corresponding to individual muscles. However, needle EMG faces many problems when converting from the laboratory to marketable devices, specifically in

Electromyography (EMG) is an extremely useful tool in extracting control signals from the human body. Needle electromyography is the current standard for obtaining superior quality muscle signals and obtaining signals corresponding to individual muscles. However, needle EMG faces many problems when converting from the laboratory to marketable devices, specifically in home devices. Many patients have issues with needles and the extra care required of needle EMG is prohibitive. Therefore, a surface EMG device that can obtain clear signals from individual muscles would be valuable to many markets in the development of next generation in home devices. Here, signals from surface EMG were analyzed using a low noise EMG evaluation system (RHD 2000; Intan Technologies). The signal to noise ratio (SNR) was calculated using MatLab. The average SNR is 4.447 for the Extensor Carpi Ulnaris, and 7.369 for the Extensor Digitorum Communis. Spectral analysis was performed using the Welch approach in MatLab. The power spectrum indicated that low frequency signals dominate the EMG of small hand muscles. Also, harmonic bands of 60Hz noise were present as part of the signal which should be accounted for with filters in future iterations of the testing method. Provided is evidence that strong, independent signals were acquired and could be used in further application of surface EMG corresponding to lifting of the fingers.
ContributorsSnyder, Joshua Scott (Author) / Muthuswamy, Jit (Thesis director) / Buneo, Christopher (Committee member) / Harrington Bioengineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05