Matching Items (39)
Filtering by
- Member of: ASU Electronic Theses and Dissertations

Description
There have been many studies on the dynamics of infectious diseases considering the age structure of the population. This study analyzes the dynamics when the population is stratified by size. This kind of models are useful in the spread of a disease in fisheries where size matters, for microorganism populations or even human diseases that are driven by weight. A simple size structured SIR model is introduced for which a threshold condition, R0, equilibria and stability are established in special cases. Hethcote's approach is used to derive, from first principles, a parallel ODE size-structure system involving n-size classes.The specific case of n = 2 is partially analyzed. Constant effort harvesting is added to this model with the purpose of exploring the role of controls and harvesting. Different harvesting policies are proposed and analyzed through simulations.
ContributorsTorres García, Griselle (Author) / Castillo-Chavez, Carlos (Thesis advisor) / Feng, Zhilan (Thesis advisor) / Lee, Sunmi (Committee member) / Arizona State University (Publisher)
Created2012

Description
Dopamine (DA) is a neurotransmitter involved in attention, goal oriented behavior, movement, reward learning, and short term and working memory. For the past four decades, mathematical and computational modeling approaches have been useful in DA research, and although every modeling approach has limitations, a model is an efficient way to generate and explore hypotheses. This work develops a model of DA dynamics in a representative, single DA neuron by integrating previous experimental, theoretical and computational research. The model consists of three compartments: the cytosol, the vesicles, and the extracellular space and forms the basis of a new mathematical paradigm for examining the dynamics of DA synthesis, storage, release and reuptake. The model can be driven by action potentials generated by any model of excitable membrane potential or even from experimentally induced depolarization voltage recordings. Here the model is forced by a previously published model of the excitable membrane of a mesencephalic DA neuron in order to study the biochemical processes involved in extracellular DA production. After demonstrating that the model exhibits realistic dynamics resembling those observed experimentally, the model is used to examine the functional changes in presynaptic mechanisms due to application of cocaine. Sensitivity analysis and numerical studies that focus on various possible mechanisms for the inhibition of DAT by cocaine provide insight for the complex interactions involved in DA dynamics. In particular, comparing numerical results for a mixed inhibition mechanism to those for competitive, non-competitive and uncompetitive inhibition mechanisms reveals many behavioral similarities for these different types of inhibition that depend on inhibition parameters and levels of cocaine. Placing experimental results within this context of mixed inhibition provides a possible explanation for the conflicting views of uptake inhibition mechanisms found in experimental neuroscience literature.
ContributorsTello-Bravo, David (Author) / Crook, Sharon M (Thesis advisor) / Greenwood, Priscilla E (Thesis advisor) / Baer, Steven M. (Committee member) / Castaneda, Edward (Committee member) / Castillo-Chavez, Carlos (Committee member) / Arizona State University (Publisher)
Created2012

Description
In the field of infectious disease epidemiology, the assessment of model robustness outcomes plays a significant role in the identification, reformulation, and evaluation of preparedness strategies aimed at limiting the impact of catastrophic events (pandemics or the deliberate release of biological agents) or used in the management of disease prevention strategies, or employed in the identification and evaluation of control or mitigation measures. The research work in this dissertation focuses on: The comparison and assessment of the role of exponentially distributed waiting times versus the use of generalized non-exponential parametric distributed waiting times of infectious periods on the quantitative and qualitative outcomes generated by Susceptible-Infectious-Removed (SIR) models. Specifically, Gamma distributed infectious periods are considered in the three research projects developed following the applications found in (Bailey 1964, Anderson 1980, Wearing 2005, Feng 2007, Feng 2007, Yan 2008, lloyd 2009, Vergu 2010). i) The first project focuses on the influence of input model parameters, such as the transmission rate, mean and variance of Gamma distributed infectious periods, on disease prevalence, the peak epidemic size and its timing, final epidemic size, epidemic duration and basic reproduction number. Global uncertainty and sensitivity analyses are carried out using a deterministic Susceptible-Infectious-Recovered (SIR) model. The quantitative effect and qualitative relation between input model parameters and outcome variables are established using Latin Hypercube Sampling (LHS) and Partial rank correlation coefficient (PRCC) and Spearman rank correlation coefficient (RCC) sensitivity indices. We learnt that: For relatively low (R0 close to one) to high (mean of R0 equals 15) transmissibility, the variance of the Gamma distribution for the infectious period, input parameter of the deterministic age-of-infection SIR model, is key (statistically significant) on the predictability of the epidemiological variables such as the epidemic duration and the peak size and timing of the prevalence of infectious individuals and therefore, for the predictability these variables, it is preferable to utilize a nonlinear system of Volterra integral equations, rather than a nonlinear system of ordinary differential equations. The predictability of epidemiological variables such as the final epidemic size and the basic reproduction number are unaffected by (or independent of) the variance of the Gamma distribution for the infectious period and therefore for the choice on which type of nonlinear system for the description of the SIR model (VIE's or ODE's) is irrelevant. Although, for practical proposes, with the aim of lowering the complexity and number operations in the numerical methods, a nonlinear system of ordinary differential equations is preferred. The main contribution lies in the development of a model based decision-tool that helps determine when SIR models given in terms of Volterra integral equations are equivalent or better suited than SIR models that only consider exponentially distributed infectious periods. ii) The second project addresses the question of whether or not there is sufficient evidence to conclude that two empirical distributions for a single epidemiological outcome, one generated using a stochastic SIR model under exponentially distributed infectious periods and the other under the non-exponentially distributed infectious period, are statistically dissimilar. The stochastic formulations are modeled via a continuous time Markov chain model. The statistical hypothesis test is conducted using the non-parametric Kolmogorov-Smirnov test. We found evidence that shows that for low to moderate transmissibility, all empirical distribution pairs (generated from exponential and non-exponential distributions) for each of the epidemiological quantities considered are statistically dissimilar. The research in this project helps determine whether the weakening exponential distribution assumption must be considered in the estimation of probability of events defined from the empirical distribution of specific random variables. iii) The third project involves the assessment of the effect of exponentially distributed infectious periods on estimates of input parameter and the associated outcome variable predictions. Quantities unaffected by the use of exponentially distributed infectious period within low transmissibility scenarios include, the prevalence peak time, final epidemic size, epidemic duration and basic reproduction number and for high transmissibility scenarios only the prevalence peak time and final epidemic size. An application designed to determine from incidence data whether there is sufficient statistical evidence to conclude that the infectious period distribution should not be modeled by an exponential distribution is developed. A method for estimating explicitly specified non-exponential parametric probability density functions for the infectious period from epidemiological data is developed. The methodologies presented in this dissertation may be applicable to models where waiting times are used to model transitions between stages, a process that is common in the study of life-history dynamics of many ecological systems.
ContributorsMorales Butler, Emmanuel J (Author) / Castillo-Chavez, Carlos (Thesis advisor) / Aparicio, Juan P (Thesis advisor) / Camacho, Erika T (Committee member) / Kang, Yun (Committee member) / Arizona State University (Publisher)
Created2014

Description
The Mathematical and Theoretical Biology Institute (MTBI) is a summer research program for undergraduate students, largely from underrepresented minority groups. Founded in 1996, it serves as a 'life-long' mentorship program, providing continuous support for its students and alumni. This study investigates how MTBI supports student development in applied mathematical research. This includes identifying of motivational factors to pursue and develop capacity to complete higher education.
The theoretical lens of developmental psychologists Lev Vygotsky (1978, 1987) and Lois Holzman (2010) that sees learning and development as a social process is used. From this view student development in MTBI is attributed to the collaborative and creative way students co-create the process of becoming scientists. This results in building a continuing network of academic and professional relationships among peers and mentors, in which around three quarters of MTBI PhD graduates come from underrepresented groups.
The extent to which MTBI creates a Vygotskian learning environment is explored from the perspectives of participants who earned doctoral degrees. Previously hypothesized factors (Castillo-Garsow, Castillo-Chavez and Woodley, 2013) that affect participants’ educational and professional development are expanded on.
Factors identified by participants are a passion for the mathematical sciences; desire to grow; enriching collaborative and peer-like interactions; and discovering career options. The self-recognition that they had the ability to be successful, key element of the Vygotskian-Holzman theoretical framework, was a commonly identified theme for their educational development and professional growth.
Participants characterize the collaborative and creative aspects of MTBI. They reported that collaborative dynamics with peers were strengthened as they co-created a learning environment that facilitated and accelerated their understanding of the mathematics needed to address their research. The dynamics of collaboration allowed them to complete complex homework assignments, and helped them formulate and complete their projects. Participants identified the creative environments of their research projects as where creativity emerged in the dynamics of the program.
These data-driven findings characterize for the first time a summer program in the mathematical sciences as a Vygotskian-Holzman environment, that is, a `place’ where participants are seen as capable applied mathematicians, where the dynamics of collaboration and creativity are fundamental components.
The theoretical lens of developmental psychologists Lev Vygotsky (1978, 1987) and Lois Holzman (2010) that sees learning and development as a social process is used. From this view student development in MTBI is attributed to the collaborative and creative way students co-create the process of becoming scientists. This results in building a continuing network of academic and professional relationships among peers and mentors, in which around three quarters of MTBI PhD graduates come from underrepresented groups.
The extent to which MTBI creates a Vygotskian learning environment is explored from the perspectives of participants who earned doctoral degrees. Previously hypothesized factors (Castillo-Garsow, Castillo-Chavez and Woodley, 2013) that affect participants’ educational and professional development are expanded on.
Factors identified by participants are a passion for the mathematical sciences; desire to grow; enriching collaborative and peer-like interactions; and discovering career options. The self-recognition that they had the ability to be successful, key element of the Vygotskian-Holzman theoretical framework, was a commonly identified theme for their educational development and professional growth.
Participants characterize the collaborative and creative aspects of MTBI. They reported that collaborative dynamics with peers were strengthened as they co-created a learning environment that facilitated and accelerated their understanding of the mathematics needed to address their research. The dynamics of collaboration allowed them to complete complex homework assignments, and helped them formulate and complete their projects. Participants identified the creative environments of their research projects as where creativity emerged in the dynamics of the program.
These data-driven findings characterize for the first time a summer program in the mathematical sciences as a Vygotskian-Holzman environment, that is, a `place’ where participants are seen as capable applied mathematicians, where the dynamics of collaboration and creativity are fundamental components.
ContributorsEvangelista, Arlene Morales (Author) / Castillo-Chavez, Carlos (Thesis advisor) / Holmes, Raquell M. (Committee member) / Mubayi, Anuj (Committee member) / Arizona State University (Publisher)
Created2015

Description
Statistical Methods have been widely used in understanding factors for clinical and public health data. Statistical hypotheses are procedures for testing pre-stated hypotheses. The development and properties of these procedures as well as their performance are based upon certain assumptions. Desirable properties of statistical tests are to maintain validity and to perform well even if these assumptions are not met. A statistical test that maintains such desirable properties is called robust. Mathematical models are typically mechanistic framework, used to study dynamic interactions between components (mechanisms) of a system, and how these interactions give rise to the changes in behavior (patterns) of the system as a whole over time.
In this thesis, I have developed a study that uses novel techniques to link robust statistical tests and mathematical modeling methods guided by limited data from developed and developing regions in order to address pressing clinical and epidemiological questions of interest. The procedure in this study consists of three primary steps, namely, data collection, uncertainty quantification in data, and linking dynamic model to collected data.
The first part of the study focuses on designing, collecting, and summarizing empirical data from the only national survey of hospitals ever conducted regarding patient controlled analgesia (PCA) practices among 168 hospitals across 40 states, in order to assess risks before putting patients on PCA. I used statistical relational models and exploratory data analysis to address the question. Risk factors assessed indicate a great concern for the safety of patients from one healthcare institution to other.
In the second part, I quantify uncertainty associated with data obtained from James A Lovell Federal Healthcare Center to primarily study the effect of Benign Prostatic Hypertrophy (BPH) on sleep architecture in patients with Obstructive Sleep Apnea (OSA). Patients with OSA and BPH demonstrated significant difference in their sleep architecture in comparison to patients without BPH. One of the ways to validate these differences in sleep architecture between the two groups may be to carry out a similar study that evaluates the effect of some other chronic disease on sleep architecture in patients with OSA.
Additionally, I also address theoretical statistical questions such as (1) how to estimate the distribution of a variable in order to retest null hypothesis when the sample size is limited, and (2) how changes on assumptions (like monotonicity and nonlinearity) translate into the effect of the independent variable on the outcome variable. To address these questions we use multiple techniques such as Partial Rank Correlation Coefficients (PRCC) based sensitivity analysis, Fractional Polynomials, and statistical relational models.
In the third part, my goal was to identify socio-economic-environment-related risk factors for Visceral Leishmaniasis (VL) and use the identified critical factors to develop a mathematical model to understand VL transmission dynamics when data is highly underreported. I primarily studied the role of age-specific- susceptibility and epidemiological quantities on the dynamics of VL in the Indian state of Bihar. Statistical results provided ideas on the choice of the modeling framework and estimates of model parameters.
In the conclusion, this study addressed three primary theoretical modeling-related questions (1) how to analyze collected data when sample size limited, and how modeling assumptions varies results of data analysis? (2) Is it possible to identify hidden associations and nonlinearity of these associations using such underpowered data and (3) how statistical models provide more reasonable structure to mathematical modeling framework that can be used in turn to understand dynamics of the system.
In this thesis, I have developed a study that uses novel techniques to link robust statistical tests and mathematical modeling methods guided by limited data from developed and developing regions in order to address pressing clinical and epidemiological questions of interest. The procedure in this study consists of three primary steps, namely, data collection, uncertainty quantification in data, and linking dynamic model to collected data.
The first part of the study focuses on designing, collecting, and summarizing empirical data from the only national survey of hospitals ever conducted regarding patient controlled analgesia (PCA) practices among 168 hospitals across 40 states, in order to assess risks before putting patients on PCA. I used statistical relational models and exploratory data analysis to address the question. Risk factors assessed indicate a great concern for the safety of patients from one healthcare institution to other.
In the second part, I quantify uncertainty associated with data obtained from James A Lovell Federal Healthcare Center to primarily study the effect of Benign Prostatic Hypertrophy (BPH) on sleep architecture in patients with Obstructive Sleep Apnea (OSA). Patients with OSA and BPH demonstrated significant difference in their sleep architecture in comparison to patients without BPH. One of the ways to validate these differences in sleep architecture between the two groups may be to carry out a similar study that evaluates the effect of some other chronic disease on sleep architecture in patients with OSA.
Additionally, I also address theoretical statistical questions such as (1) how to estimate the distribution of a variable in order to retest null hypothesis when the sample size is limited, and (2) how changes on assumptions (like monotonicity and nonlinearity) translate into the effect of the independent variable on the outcome variable. To address these questions we use multiple techniques such as Partial Rank Correlation Coefficients (PRCC) based sensitivity analysis, Fractional Polynomials, and statistical relational models.
In the third part, my goal was to identify socio-economic-environment-related risk factors for Visceral Leishmaniasis (VL) and use the identified critical factors to develop a mathematical model to understand VL transmission dynamics when data is highly underreported. I primarily studied the role of age-specific- susceptibility and epidemiological quantities on the dynamics of VL in the Indian state of Bihar. Statistical results provided ideas on the choice of the modeling framework and estimates of model parameters.
In the conclusion, this study addressed three primary theoretical modeling-related questions (1) how to analyze collected data when sample size limited, and how modeling assumptions varies results of data analysis? (2) Is it possible to identify hidden associations and nonlinearity of these associations using such underpowered data and (3) how statistical models provide more reasonable structure to mathematical modeling framework that can be used in turn to understand dynamics of the system.
ContributorsGonzalez, Beverly, 1980- (Author) / Castillo-Chavez, Carlos (Thesis advisor) / Mubayi, Anuj (Thesis advisor) / Nuno, Miriam (Committee member) / Arizona State University (Publisher)
Created2015

Description
The 2009-10 influenza and the 2014-15 Ebola pandemics brought once again urgency to an old question: What are the limits on prediction and what can be proposed that is useful in the face of an epidemic outbreak?
This thesis looks first at the impact that limited access to vaccine stockpiles may have on a single influenza outbreak. The purpose is to highlight the challenges faced by populations embedded in inadequate health systems and to identify and assess ways of ameliorating the impact of resource limitations on public health policy.
Age-specific per capita constraint rates play an important role on the dynamics of communicable diseases and, influenza is, of course, no exception. Yet the challenges associated with estimating age-specific contact rates have not been decisively met. And so, this thesis attempts to connect contact theory with age-specific contact data in the context of influenza outbreaks in practical ways. In mathematical epidemiology, proportionate mixing is used as the preferred theoretical mixing structure and so, the frame of discussion of this dissertation follows this specific theoretical framework. The questions that drive this dissertation, in the context of influenza dynamics, proportionate mixing, and control, are:
I. What is the role of age-aggregation on the dynamics of a single outbreak? Or simply speaking, does the number and length of the age-classes used to model a population make a significant difference on quantitative predictions?
II. What would the age-specific optimal influenza vaccination policies be? Or, what are the age-specific vaccination policies needed to control an outbreak in the presence of limited or unlimited vaccine stockpiles?
Intertwined with the above questions are issues of resilience and uncertainty including, whether or not data collected on mixing (by social scientists) can be used effectively to address both questions in the context of influenza and proportionate mixing. The objective is to provide answers to these questions by assessing the role of aggregation (number and length of age classes) and model robustness (does the aggregation scheme selected makes a difference on influenza dynamics and control) via comparisons between purely data-driven model and proportionate mixing models.
This thesis looks first at the impact that limited access to vaccine stockpiles may have on a single influenza outbreak. The purpose is to highlight the challenges faced by populations embedded in inadequate health systems and to identify and assess ways of ameliorating the impact of resource limitations on public health policy.
Age-specific per capita constraint rates play an important role on the dynamics of communicable diseases and, influenza is, of course, no exception. Yet the challenges associated with estimating age-specific contact rates have not been decisively met. And so, this thesis attempts to connect contact theory with age-specific contact data in the context of influenza outbreaks in practical ways. In mathematical epidemiology, proportionate mixing is used as the preferred theoretical mixing structure and so, the frame of discussion of this dissertation follows this specific theoretical framework. The questions that drive this dissertation, in the context of influenza dynamics, proportionate mixing, and control, are:
I. What is the role of age-aggregation on the dynamics of a single outbreak? Or simply speaking, does the number and length of the age-classes used to model a population make a significant difference on quantitative predictions?
II. What would the age-specific optimal influenza vaccination policies be? Or, what are the age-specific vaccination policies needed to control an outbreak in the presence of limited or unlimited vaccine stockpiles?
Intertwined with the above questions are issues of resilience and uncertainty including, whether or not data collected on mixing (by social scientists) can be used effectively to address both questions in the context of influenza and proportionate mixing. The objective is to provide answers to these questions by assessing the role of aggregation (number and length of age classes) and model robustness (does the aggregation scheme selected makes a difference on influenza dynamics and control) via comparisons between purely data-driven model and proportionate mixing models.
ContributorsMorales, Romarie (Author) / Castillo-Chavez, Carlos (Thesis advisor) / Mubayi, Anuj (Thesis advisor) / Towers, Sherry (Committee member) / Arizona State University (Publisher)
Created2016

Description
The Visceral Leishmaniasis (VL) is primarily endemic in five countries, with India and Sudan having the highest burden. The risk factors associated with VL are either unknown in some regions or vary drastically among empirical studies. Here, a dynamical model, motivated and informed by field data from the literature, is analyzed and employed to identify and quantify the impact of region dependent risks on the VL transmission dynamics. Parameter estimation procedures were developed using model-derived quantities and empirical data from multiple resources. The dynamics of VL depend on the estimates of the control reproductive number, RC, interpreted as the average number of secondary infections generated by a single infectious individual during the infectious period. The distribution of RC was estimated for both India (with mean 2.1 ± 1.1) and Sudan (with mean 1.45 ± 0.57). This suggests that VL can be established in naive regions of India more easily than in naive regions of Sudan. The parameter sensitivity analysis on RC suggests that the average biting rate and transmission probabilities between host and vector are among the most sensitive parameters for both countries. The comparative assessment of VL transmission dynamics in both India and Sudan was carried out by parameter sensitivity analysis on VL-related prevalences (such as prevalences of asymptomatic hosts, symptomatic hosts, and infected vectors). The results identify that the treatment and symptoms’ developmental rates are parameters that are highly sensitive to VL symptomatic and asymptomatic host prevalence, respectively, for both countries. It is found that the estimates of transmission probability are significantly different between India (from human to sandflies with mean of 0.39 ± 0.12; from sandflies to human with mean 0.0005 ± 0.0002) and Sudan (from human to sandflies with mean 0.26 ± 0.07; from sandflies to human with mean 0.0002 ± 0.0001). The results have significant implications for elimination. An increasing focus on elimination requires a review of priorities within the VL control agenda. The development of systematic implementation of control programs based on identified risk factors (such as monitoring of asymptomatically infected individuals) has a high transmission-blocking potential.
ContributorsBarley, Kamal K (Author) / Castillo-Chavez, Carlos (Thesis advisor) / Mubayi, Anuj (Thesis advisor) / Safan, Muntaser (Committee member) / Arizona State University (Publisher)
Created2016

Description
Analysis of social networks has the potential to provide insights into wide range of applications. As datasets continue to grow, a key challenge is the lack of a widely applicable algorithmic framework for detection of statistically anomalous networks and network properties. Unlike traditional signal processing, where models of truth or empirical verification and background data exist and are often well defined, these features are commonly lacking in social and other networks. Here, a novel algorithmic framework for statistical signal processing for graphs is presented. The framework is based on the analysis of spectral properties of the residuals matrix. The framework is applied to the detection of innovation patterns in publication networks, leveraging well-studied empirical knowledge from the history of science. Both the framework itself and the application constitute novel contributions, while advancing algorithmic and mathematical techniques for graph-based data and understanding of the patterns of emergence of novel scientific research. Results indicate the efficacy of the approach and highlight a number of fruitful future directions.
ContributorsBliss, Nadya Travinin (Author) / Laubichler, Manfred (Thesis advisor) / Castillo-Chavez, Carlos (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2015

Description
Diseases have been part of human life for generations and evolve within the population, sometimes dying out while other times becoming endemic or the cause of recurrent outbreaks. The long term influence of a disease stems from different dynamics within or between pathogen-host, that have been analyzed and studied by many researchers using mathematical models. Co-infection with different pathogens is common, yet little is known about how infection with one pathogen affects the host's immunological response to another. Moreover, no work has been found in the literature that considers the variability of the host immune health or that examines a disease at the population level and its corresponding interconnectedness with the host immune system. Knowing that the spread of the disease in the population starts at the individual level, this thesis explores how variability in immune system response within an endemic environment affects an individual's vulnerability, and how prone it is to co-infections. Immunology-based models of Malaria and Tuberculosis (TB) are constructed by extending and modifying existing mathematical models in the literature. The two are then combined to give a single nine-variable model of co-infection with Malaria and TB. Because these models are difficult to gain any insight analytically due to the large number of parameters, a phenomenological model of co-infection is proposed with subsystems corresponding to the individual immunology-based model of a single infection. Within this phenomenological model, the variability of the host immune health is also incorporated through three different pathogen response curves using nonlinear bounded Michaelis-Menten functions that describe the level or state of immune system (healthy, moderate and severely compromised). The immunology-based models of Malaria and TB give numerical results that agree with the biological observations. The Malaria--TB co-infection model gives reasonable results and these suggest that the order in which the two diseases are introduced have an impact on the behavior of both. The subsystems of the phenomenological models that correspond to a single infection (either of Malaria or TB) mimic much of the observed behavior of the immunology-based counterpart and can demonstrate different behavior depending on the chosen pathogen response curve. In addition, varying some of the parameters and initial conditions in the phenomenological model yields a range of topologically different mathematical behaviors, which suggests that this behavior may be able to be observed in the immunology-based models as well. The phenomenological models clearly replicate the qualitative behavior of primary and secondary infection as well as co-infection. The mathematical solutions of the models correspond to the fundamental states described by immunologists: virgin state, immune state and tolerance state. The phenomenological model of co-infection also demonstrates a range of parameter values and initial conditions in which the introduction of a second disease causes both diseases to grow without bound even though those same parameters and initial conditions did not yield unbounded growth in the corresponding subsystems. This results applies to all three states of the host immune system. In terms of the immunology-based system, this would suggest the following: there may be parameter values and initial conditions in which a person can clear Malaria or TB (separately) from their system but in which the presence of both can result in the person dying of one of the diseases. Finally, this thesis studies links between epidemiology (population level) and immunology in an effort to assess the impact of pathogen's spread within the population on the immune response of individuals. Models of Malaria and TB are proposed that incorporate the immune system of the host into a mathematical model of an epidemic at the population level.
ContributorsSoho, Edmé L (Author) / Wirkus, Stephen (Thesis advisor) / Castillo-Chavez, Carlos (Thesis advisor) / Chowell-Puente, Gerardo (Committee member) / Arizona State University (Publisher)
Created2011

Description
Olfaction is an important sensory modality for behavior since odors inform animals of the presence of food, potential mates, and predators. The fruit fly, Drosophila melanogaster, is a favorable model organism for the investigation of the biophysical mechanisms that contribute to olfaction because its olfactory system is anatomically similar to but simpler than that of vertebrates. In the Drosophila olfactory system, sensory transduction takes place in olfactory receptor neurons housed in the antennae and maxillary palps on the front of the head. The first stage of olfactory processing resides in the antennal lobe, where the structural unit is the glomerulus. There are at least three classes of neurons in the antennal lobe - excitatory projection neurons, excitatory local neurons, and inhibitory local neurons. The arborizations of the local neurons are confined to the antennal lobe, and output from the antennal lobe is carried by projection neurons to higher regions of the brain. Different views exist of how circuits of the Drosophila antennal lobe translate input from the olfactory receptor neurons into projection neuron output. We construct a conductance based neuronal network model of the Drosophila antennal lobe with the aim of understanding possible mechanisms within the antennal lobe that account for the variety of projection neuron activity observed in experimental data. We explore possible outputs obtained from olfactory receptor neuron input that mimic experimental recordings under different connectivity paradigms. First, we develop realistic minimal cell models for the excitatory local neurons, inhibitory local neurons, and projections neurons based on experimental data for Drosophila channel kinetics, and explore the firing characteristics and mathematical structure of these models. We then investigate possible interglomerular and intraglomerular connectivity patterns in the Drosophila antennal lobe, where olfactory receptor neuron input to the antennal lobe is modeled with Poisson spike trains, and synaptic connections within the antennal lobe are mediated by chemical synapses and gap junctions as described in the Drosophila antennal lobe literature. Our simulation results show that inhibitory local neurons spread inhibition among all glomeruli, where projection neuron responses are decreased relatively uniformly for connections of synaptic strengths that are homogeneous. Also, in the case of homogeneous excitatory synaptic connections, the excitatory local neuron network facilitates odor detection in the presence of weak stimuli. Excitatory local neurons can spread excitation from projection neurons that receive more input from olfactory receptor neurons to projection neurons that receive less input from olfactory receptor neurons. For the parameter values for the network models associated with these results, eLNs decrease the ability of the network to discriminate among single odors.
ContributorsLuli, Dori (Author) / Crook, Sharon (Thesis advisor) / Baer, Steven (Committee member) / Castillo-Chavez, Carlos (Committee member) / Smith, Brian (Committee member) / Arizona State University (Publisher)
Created2013