Matching Items (504)
126596-Thumbnail Image.png
Description

Society is heavily dependent on a reliable electric supply; all infrastructure systems depend on electricity to operate. When the electric system fails, the impacts can be catastrophic (food spoilage, inoperable medical devices, lack of access to water, etc.). The social impacts, defined as the direct and indirect impacts on people,

Society is heavily dependent on a reliable electric supply; all infrastructure systems depend on electricity to operate. When the electric system fails, the impacts can be catastrophic (food spoilage, inoperable medical devices, lack of access to water, etc.). The social impacts, defined as the direct and indirect impacts on people, of power outages must be explored as the likelihood of power outages and blackouts are increasing. However, compared to other hazards, such as heat and flooding, the knowledge base on the impacts of power outages is relatively small. The purpose of this thesis is to identify what is currently known about the social impacts of power outages, identify where gaps in the literature exist, and deploy a survey to explore power outage experiences at the household level. This thesis is comprised of two chapters, a systematic literature review on the current knowledge of the social impacts of power outages and a multi-city survey focused on power outage experiences.

The first chapter comprised of a systematic literature review using a combined search of in Scopus which returned 762 candidate articles were identified that potentially explored the social impacts of power outages. However, after multiple filtering criteria were applied, only 45 articles met all criteria. Four themes were used to classify the literature, not exclusively, including modeling, social, technical, and other. Only papers that were classified as “social” - meaning they observed how people were affected by a power outage - or in combination with other categories were used within the review.

From the literature, populations of concern were identified, including minority demographics - specifically Blacks or African Americans, children, elderly, and rural populations. The most commonly reported health concerns were from those that rely on medical devices for chronic conditions and unsafe generator practices. Criminal activity was also reported to increase during prolonged power outages and can be mitigated by consistent messaging on where to receive assistance and when power will be restored. Providing financial assistance and resources such as food and water can reduce the crime rate temporarily, but the crime rate can be expected to increase once the relief expires. Authorities should expect looting to occur, especially in poorer areas, during prolonged power outages. Gaps in the literature were identified and future directions for research were provided.

The second chapter consists of a multi-city survey that targeted three major cities across the United States (Detroit, MI; Miami, FL; and Phoenix, AZ). The survey was disseminated through Amazon’s Mechanical Turk and hosted by Qualtrics. 896 participants from the three cities qualified to complete the full version of the survey. Three criteria had to be met for participants to complete the full survey including residing in one of the three target cities, living at their primary address for a majority of the year, and indicate they had experienced a power outage within the last five years.

Participants were asked questions regarding the number of outages experienced in the last five years, the length of their most recent and longest outage experienced, if they owned a generator, how they managed their longest power outage, if participants or anyone in their household relies on a medical device, the financial burden their power outage caused, and standard demographic- and income-related questions. Race was a significant variable that influenced the outage duration length but not frequency in Phoenix and Detroit. Income was not a significant variable associated with experiencing greater economic impacts, such as having thrown food away because of an outage and not receiving help during the longest outage. Additional assessments similar to this survey are needed to better understand household power outage experiences.

Findings from this thesis demonstrate traditional metrics used in vulnerability indices were not indicative of who experienced the greatest effects of power outages. Additionally, other factors that are not included in these indices, such as owning adaptive resources including medical devices and generators in Phoenix and Detroit, are factors in reducing negative outcomes. More research is needed on this topic to indicate which populations are more likely to experience factors that can influence positive or negative outage outcomes.

ContributorsAndresen, Adam (Author) / Hondula, David M. (Contributor, Contributor) / Gall, Melanie (Contributor) / Meerow, Sara (Contributor)
Created2020-07-20
162992-Thumbnail Image.png
Description

According to the Centers for Disease Control and Prevention (CDC), more people die in the U.S. from heat than from all other natural disasters combined. According to the Environmental Protection Agency (EPA), more than 1,300 deaths per year in the United States are due to extreme heat. Arizona, California and

According to the Centers for Disease Control and Prevention (CDC), more people die in the U.S. from heat than from all other natural disasters combined. According to the Environmental Protection Agency (EPA), more than 1,300 deaths per year in the United States are due to extreme heat. Arizona, California and Texas are the three states with the highest burden, accounting for 43% of all heat-related deaths according to the CDC.

Although only 5% of housing in Maricopa County, Arizona, is mobile homes, approximately 30% of indoor heat-related deaths occur in these homes. Thus, the residents of mobile homes in Maricopa County are disproportionately affected by heat. Mobile home residents are extremely exposed to heat due to the high density of mobile home parks, poor construction of dwellings, lack of vegetation, socio-demographic features and not being eligible to get utility and financial assistance.

We researched numerous solutions across different domains that could help build the heat resilience of mobile home residents. As a result we found 50 different solutions for diverse stakeholders, budgets and available resources. The goal of this toolbox is to present these solutions and to explain how to apply them in order to get the most optimal result and build About this Solutions Guide People who live in mobile homes are 6 to 8 times more likely to die of heat-associated deaths. heat resilience for mobile home residents. These solutions were designed as a coordinated set of actions for everyone — individual households, mobile home residents, mobile home park owners, cities and counties, private businesses and nonprofits serving mobile home parks, and other stakeholders — to be able to contribute to heat mitigation for mobile home residents.

When we invest in a collective, coordinated suite of solutions that are designed specifically to address the heat vulnerability of mobile homes residents, we can realize a resilience dividend in maintaining affordable, feasible, liveable housing for the 20 million Americans who choose mobile homes and manufactured housing as their place to live and thrive.

ContributorsVarfalameyeva, Katsiaryna (Author) / Solís, Patricia (Author) / Phillips, Lora A. (Author) / Charley, Elisha (Author) / Hondula, David M. (Author) / Kear, Mark (Author)
Created2021
Description

En la zona metropolitana de Phoenix, el calor urbano está afectando la salud, la seguridad y la economía y se espera que estos impactos empeoren con el tiempo. Se prevé que el número de días por encima de 110˚F aumentará más del doble para el 2060. En mayo de 2017,

En la zona metropolitana de Phoenix, el calor urbano está afectando la salud, la seguridad y la economía y se espera que estos impactos empeoren con el tiempo. Se prevé que el número de días por encima de 110˚F aumentará más del doble para el 2060. En mayo de 2017, The Nature Conservancy, el Departamento de Salud Pública del condado de Maricopa, Central Arizona Conservation Alliance, la Red de Investigación en Sostenibilidad sobre la Resiliencia Urbana a Eventos Extremos, el Centro de Investigación del Clima Urbano de Arizona State University y el Center for Whole Communities lanzaron un proceso participativo de planificación de acciones contra el calor para identificar tanto estrategias de mitigación como de adaptación a fin de reducir directamente el calor y mejorar la capacidad de los residentes para lidiar con el calor. Las organizaciones comunitarias con relaciones existentes en tres vecindarios seleccionados para la planificación de acciones contra el calor se unieron más tarde al equipo del proyecto: Phoenix Revitalization Corporation, RAILMesa y Puente Movement. Más allá de construir un plan de acción comunitario contra el calor y completar proyectos de demostración, este proceso participativo fue diseñado para desarrollar conciencia, iniciativa y cohesión social en las comunidades subrepresentadas. Asimismo el proceso de planificación de acciones contra el calor fue diseñado para servir como modelo para esfuerzos futuros de resiliencia al calor y crear una visión local, contextual y culturalmente apropiada de un futuro más seguro y saludable. El método iterativo de planificación y participación utilizado por el equipo del proyecto fortaleció las relaciones dentro y entre los vecindarios, las organizaciones comunitarias, los responsables de la toma de decisiones y el equipo núcleo, y combinó la sabiduría de la narración de historias y la evidencia científica para comprender mejor los desafíos actuales y futuros que enfrentan los residentes durante eventos de calor extremo. Como resultado de tres talleres en cada comunidad, los residentes presentaron ideas que quieren ver implementadas para aumentar su comodidad y seguridad térmica durante los días de calor extremo.

Como se muestra a continuación, las ideas de los residentes se interceptaron en torno a conceptos similares, pero las soluciones específicas variaron entre los vecindarios. Por ejemplo, a todos los vecindarios les gustaría agregar sombra a sus corredores peatonales, pero variaron las preferencias para la ubicación de las mejoras para dar sombra. Algunos vecindarios priorizaron las rutas de transporte público, otros priorizaron las rutas utilizadas por los niños en su camino a la escuela y otros quieren paradas de descanso con sombra en lugares clave. Surgieron cuatro temas estratégicos generales en los tres vecindarios: promover y educar; mejorar la comodidad/capacidad de afrontamiento; mejorar la seguridad; fortalecer la capacidad. Estos temas señalan que existen serios desafíos de seguridad contra el calor en la vida diaria de los residentes y que la comunidad, los negocios y los sectores responsables de la toma de decisión deben abordar esos desafíos.

Los elementos del plan de acción contra el calor están diseñados para incorporarse a otros esfuerzos para aliviar el calor, crear ciudades resilientes al clima y brindar salud y seguridad pública. Los socios de implementación del plan de acción contra el calor provienen de la región de la zona metropolitana de Phoenix, y se brindan recomendaciones para apoyar la transformación a una ciudad más fresca.

Para ampliar la escala de este enfoque, los miembros del equipo del proyecto recomiendan a) compromiso continuo e inversiones en estos vecindarios para implementar el cambio señalado como vital por los residentes, b) repetir el proceso de planificación de acción contra el calor con líderes comunitarios en otros vecindarios, y c) trabajar con las ciudades, los planificadores urbanos y otras partes interesadas para institucionalizar este proceso, apoyando las políticas y el uso de las métricas propuestas para crear comunidades más frescas.

ContributorsMesserschmidt, Maggie (Contributor) / Guardaro, Melissa (Contributor) / White, Jessica R. (Contributor) / Berisha, Vjollca (Contributor) / Hondula, David M. (Contributor) / Feagan, Mathieu (Contributor) / Grimm, Nancy (Contributor) / Beule, Stacie (Contributor) / Perea, Masavi (Contributor) / Ramirez, Maricruz (Contributor) / Olivas, Eva (Contributor) / Bueno, Jessica (Contributor) / Crummey, David (Contributor) / Winkle, Ryan (Contributor) / Rothballer, Kristin (Contributor) / Mocine-McQueen, Julian (Contributor) / Maurer, Maria (Artist) / Coseo, Paul (Artist) / Crank, Peter J (Designer) / Broadbent, Ashley (Designer) / McCauley, Lisa (Designer) / Nature's Cooling Systems Project (Contributor) / Nature Conservancy (U.S.) (Contributor) / Phoenix Revitalization Corporation (Contributor) / Puente Movement (Contributor) / Maricopa County (Ariz.). Department of Public Health (Contributor) / Central Arizona Conservation Alliance (Contributor) / Arizona State University. Urban Climate Research Center (Contributor) / Arizona State University. Urban Resilience to Extremes Sustainability Research Network (Contributor) / Center for Whole Communities (Contributor) / RAILmesa (Contributor) / Vitalyst Health Foundation (Funder)
Created2022
Description
It is well known that deficiencies in key chemical elements (such as phosphorus, P) can reduce animal growth; however, recent empirical data have shown that high levels of dietary nutrients can also reduce animal growth. In ecological stoichiometry, this phenomenon is known as the "stoichiometric knife edge," but its underlying

It is well known that deficiencies in key chemical elements (such as phosphorus, P) can reduce animal growth; however, recent empirical data have shown that high levels of dietary nutrients can also reduce animal growth. In ecological stoichiometry, this phenomenon is known as the "stoichiometric knife edge," but its underlying mechanisms are not well-known. Previous work has suggested that the crustacean zooplankter Daphnia reduces its feeding rates on phosphorus-rich food, causing low growth due to insufficient C (energy) intake. To test for this mechanism, feeding rates of Daphnia magna on algae (Scenedesmus acutus) differing in C:P ratio (P content) were determined. Overall, there was a significant difference among all treatments for feeding rate (p < 0.05) with generally higher feeding rates on P-rich algae. These data indicate that both high and low food C:P ratio do affect Daphnia feeding rate but are in contradiction with previous work that showed that P-rich food led to strong reductions in feeding rate. Additional experiments are needed to gain further insights.
ContributorsSchimpp, Sarah Ann (Author) / Elser, James (Thesis director) / Neuer, Susanne (Committee member) / Peace, Angela (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Sustainability (Contributor)
Created2014-05
167588-Thumbnail Image.png
Description

For decades, understanding the complexity of behaviors, motivations, and values has interested researchers across various disciplines. So much so that there are numerous terms, frameworks, theories, and studies devoted to understanding these complexities and how they interact and evolve into actions. However, little research has examined how employee behaviors translate

For decades, understanding the complexity of behaviors, motivations, and values has interested researchers across various disciplines. So much so that there are numerous terms, frameworks, theories, and studies devoted to understanding these complexities and how they interact and evolve into actions. However, little research has examined how employee behaviors translate into the work environment, particularly regarding perceived organizational success. This study advances research by quantitatively assessing how a greater number of individual employees’ pro-environmental behaviors are related to the perceived success of environmentally sustainable workplace activities. We have concluded that the more pro-environmental behaviors an employee embodies, the more positively they perceive the success of their local government's sustainable purchasing policy. Additionally, other factors matter, including organizational behaviors, like training, innovation, and reduction of red tape.

ContributorsFox, Angela (Author) / Darnall, Nicole (Thesis advisor) / Bretschneider, Stuart (Committee member) / Behravesh, Shirley-Ann (Committee member) / School of Sustainability (Contributor)
Created2022-04-19
167589-Thumbnail Image.png
Description

BACKGROUND: The City of Phoenix initiated the HeatReady program in 2018 to prepare for extreme heat, as there was no official tool, framework, or mechanism at the city level to manage extreme heat. The current landscape of heat safety culture in schools, which are critical community hubs, has received less

BACKGROUND: The City of Phoenix initiated the HeatReady program in 2018 to prepare for extreme heat, as there was no official tool, framework, or mechanism at the city level to manage extreme heat. The current landscape of heat safety culture in schools, which are critical community hubs, has received less illumination. HeatReady Schools—a critical component of a HeatReady City—are those that are increasingly able to identify, prepare for, mitigate, track, and respond to the negative impacts of schoolgrounds heat. However, minimal attention has been given to formalize heat preparedness in schools to mitigate high temperatures and health concerns in schoolchildren, a heat-vulnerable population. This study set out to understand heat perceptions, (re)actions, and recommendations of key stakeholders and to identify critical themes around heat readiness. METHODS: An exploratory sequential mixed-methods case study approach was used. These methods focused on acquiring new insight on heat perceptions at elementary schools through semi-structured interviews using thematic analysis and the Delphi panel. Participants included public health professionals and school community members at two elementary schools—one public charter, one public—in South Phoenix, Arizona, a region that has been burdened historically with inequitable distribution of heat resources due to environmental racism and injustices. RESULTS: Findings demonstrated that 1) current heat safety resources are available but not fully utilized within the school sites, 2) expert opinions support that extreme heat readiness plans must account for site-specific needs, particularly education as a first step, and 3) students are negatively impacted by the effects of extreme heat, whether direct or indirect, both inside and outside the classroom. CONCLUSIONS: From key informant interviews and a Delphi panel, a list of 30 final recommendations were developed as important actions to be taken to become “HeatReady.” Future work will apply these recommendations in a HeatReady School Growth Tool that schools can tailor be to their individual needs to improve heat safety and protection measures at schools.

ContributorsShortridge, Adora (Author) / Walker, William VI (Author) / White, Dave (Committee member) / Guardaro, Melissa (Committee member) / Hondula, David M. (Committee member) / Vanos, Jennifer K. (Committee member) / School of Sustainability (Contributor)
Created2022-04-18
Description
Pima was not the original name for the tribe of the Native Americans that lived along the Gila River, but their name is only one of many changes this tribe has faced due to the influence of outside sources. Pima was a name given to this tribe by the Spaniards

Pima was not the original name for the tribe of the Native Americans that lived along the Gila River, but their name is only one of many changes this tribe has faced due to the influence of outside sources. Pima was a name given to this tribe by the Spaniards during the 1600s. Throughout history the Pima have fought not only for their rights as a nation, but also for the rights of their beloved river, the Gila River. The relationship between the Pima tribe and Gila River is a very strong and deep connection. In fact, the Pima call themselves A-a'tam, which means "the people," and they identify with the Papago, a historical name for the Indians in the Sonoran Desert. A'kimult, which means "river" was added to their name as well. Being known as the River People may fit perfectly with this tribe due to their close knit and respectful relationship with the river over the decades (Russell, "The Pima Indians, 1975). Today the Pima call the Gila River Indian Community their main Tribal headquarters, which is located south of Phoenix. The Gila River Indian Community (GRIC) is part of both the Pinal and Maricopa counties and has a land area of 583.749 square miles ("Brownfields", 2010). Water deprivation and a bleak agricultural economy are challenges facing the Pima, which historically were strong in both areas. The Gila River has gone from a naturally flowing river to a restricted and nearly dried up waterbed. This research paper will examine the changes that both the Pima and the Gila River have undergone since settlers began to claim land in the late 1800's. It is my goal to look into the natural history and ecology of the Gila River and explain how this change has affected the Pima and their sustainability as a tribe. The ultimate goal is to have information easily accessible for reference for future research projects and to ] provide background information to help implement new programs and projects that will benefit the GRIC. Understanding the relationship between the Gila Valley and Pima will present areas where sustainable projects can improve the economy and society as a whole. The Native Americans who will be specifically addressed during this research are the tribes on the GRIC, which comprise the Akimel O-odham (Pima) and Pee Posh (Maricopa). These communities have a resident population of 15,084 and are located in the Maricopa and Pinal counties of central Arizona, to the south and east of metropolitan Phoenix ("Brownfields", 2010). Today the community is 372,000 acres and varies with an elevation of 935 feet to 1,450 feet ("Gila River", 2012). Literature will be the primary area of research along with informal discussions with employees of the GRIC. The Pimas' beliefs, interests, and practices will be addressed and researched; and review of the literature that deals with each problem they have faced as a result of the changing economy and society. By researching the relationship and proposing new ideas to help maintain the GRIC it will assure that the interests of the Pima are the priority. The potential that this research project can offer must encompass cultural sustainability, which is "developing, renewing and maintaining human cultures that create positive, enduring relationships with other peoples and the natural world" (Hawkes, 2001).
ContributorsRagan, McKenzie (Author) / Martinez, David (Thesis director) / Larson, Kelli (Committee member) / Manetta, Carol (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / College of Public Programs (Contributor)
Created2012-12
Description
This project aims to provide a contextualized history of the Sky Harbor Neighborhood Association‟s community collective action efforts. The Sky Harbor Neighborhood (SHN) of East Phoenix is bounded on the West by 24th St., on the East by 32nd St., on the North by Roosevelt St., and the South by

This project aims to provide a contextualized history of the Sky Harbor Neighborhood Association‟s community collective action efforts. The Sky Harbor Neighborhood (SHN) of East Phoenix is bounded on the West by 24th St., on the East by 32nd St., on the North by Roosevelt St., and the South by Washington Street. SHN is a majority Latino, low-income, working class community (U.S. Census Bureau, 2010) that faces a variety of challenges including low walkability due to inadequate pedestrian infrastructure, low tree coverage, and crime. East Van Buren St., which has a reputation for being one of Phoenix‟s red-light districts, splits the neighborhood in two. In addition, the SHN lacks some key amenities such as grocery stores and is partly considered a food desert by the United States Department of Agriculture (USDA Economic Research Service, 2012).
ContributorsPearson, Kimberly (Author) / Golub, Aaron (Thesis director) / Wiek, Arnim (Committee member) / York, Abigail (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Sustainability (Contributor)
Created2012-12
Description
Freshwater is an essential component of life for most organisms on earth. "Civilization itself is built on a foundation of water (Fagan, 2011)," as people often congregate near water sources, and find innovative solutions to exploit these resources for food production and domestic needs. Rising demand for water due to

Freshwater is an essential component of life for most organisms on earth. "Civilization itself is built on a foundation of water (Fagan, 2011)," as people often congregate near water sources, and find innovative solutions to exploit these resources for food production and domestic needs. Rising demand for water due to altered lifestyles and population increase pose further stress on water availability. Alterations and pollution of freshwater ecosystems can dramatically compromise ecological services that many species, among them humans, depend on. Arid places are specifically vulnerable in regards to water, characterized by very low levels of precipitation, as well as many dry months, which are often followed by a short time of severe storms. Considering the interconnectedness of social and ecological systems in regards to freshwater services is crucial in order to sustainably manage freshwater resources and avoid ecological crises that in turn are likely to lead to social crises around the globe (Berkes et. al., 2003).
ContributorsHenenson, Einav (Author) / Anderies, M. John (Thesis director) / Aggarwal, Rimjhim (Committee member) / Golub, Aaron (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor)
Created2012-12
Description

Is there a mismatch between urban farmers’ perceptions of their farm’s environmental sustainability and its actual environmental impact? Focusing on the use of water and nutrients on each farm as described by the farmers through interviews, it is evident that there is some level of disconnect between ideals and practices.

Is there a mismatch between urban farmers’ perceptions of their farm’s environmental sustainability and its actual environmental impact? Focusing on the use of water and nutrients on each farm as described by the farmers through interviews, it is evident that there is some level of disconnect between ideals and practices. This project may aid in bridging the gap between the two in regard to the farmers’ sustainability goals. This project will move forward by continuing interviews with farmers as well as collecting soil and water from the farms in order to more accurately quantify the sustainability of the farms’ practices. This project demonstrates that there is some degree of misalignment between perception and reality. Two farms claimed they were sustainable when their practices did not reflect that, while 2 farms said they were not sure if they were sustainable when their practices indicated otherwise. Samples from two farms showed high concentrations of nutrients and salts, supporting the idea that there may be a mismatch between perceived and actual sustainability.

ContributorsBonham, Emma Eileen (Author) / Muenich, Rebecca (Thesis director) / Zanin, Alaina (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / School of Sustainability (Contributor) / School of Sustainable Engineering & Built Envirnmt (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05