Matching Items (732)
Description
This paper explores the use of different classroom management styles by teachers engaged in a study. The study was focused on testing an educational computer program called The Doctor's Cure in s southwester school district with ready access to computers. The Doctor's Cure uses interactive storytelling and transformational play to

This paper explores the use of different classroom management styles by teachers engaged in a study. The study was focused on testing an educational computer program called The Doctor's Cure in s southwester school district with ready access to computers. The Doctor's Cure uses interactive storytelling and transformational play to teach seventh graders how to write persuasively. The definitions of student centered and teacher centered management styles used in this paper are drawn from Garret (2008) which suggests that teachers are not entirely one management style or the other, but a mix of the two. This paper closely examines three teachers, two with teacher centered styles and one with a student centered style in order to see which style was most effective in promoting the learning of persuasive writing skills. The findings tentatively indicate that teacher centered management styles yield larger gains in learning compared to more student centered styles.
ContributorsAyala, Joel Nicholas (Author) / Hayes, Elisabeth (Thesis director) / Siyahhan, Sinem (Committee member) / Holmes, Jeff (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
Description
Electrochemical sensors function by detecting electroactive species at the electrode surface of a screen printed sensor. As more force is applied, the concentration of electroactive species at the surface of the sensor increases and a larger current is measured. Thus, when all conditions including voltage are made constant, as in

Electrochemical sensors function by detecting electroactive species at the electrode surface of a screen printed sensor. As more force is applied, the concentration of electroactive species at the surface of the sensor increases and a larger current is measured. Thus, when all conditions including voltage are made constant, as in Amp i-t, a quantifiable current can be read and the force applied can be calculated. Two common electrochemical techniques in which current is measured, cyclic voltammetry(CV) and amperometric i-t(Amp i-t), were used. A compressible sensor capable of transducing a force and acquiring feedback was created.
ContributorsFeldman, Austin Marc (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
Description
Misfolding and aggregation of alpha-synuclein (a-syn) has been strongly correlated with the pathogenesis of Parkinson's disease (PD). Reagents such as single chain antibody fragments (scFv) that can interact with specific aggregate forms of a-syn can be very useful to study how different aggregate forms affect cells. Here we utilize two

Misfolding and aggregation of alpha-synuclein (a-syn) has been strongly correlated with the pathogenesis of Parkinson's disease (PD). Reagents such as single chain antibody fragments (scFv) that can interact with specific aggregate forms of a-syn can be very useful to study how different aggregate forms affect cells. Here we utilize two scFvs, D5 and 10H, that recognize two distinct oligomeric forms of a-syn to characterize the presence of different a-syn aggregates in animal models of PD.
ContributorsAlam, Now Bahar (Author) / Sierks, Michael (Thesis director) / Pauken, Christine (Committee member) / Williams, Stephanie (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
Description
Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has

Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has been mostly ignored. Characterizing the influence of arm configuration (i.e. intrinsic factors) would allow greater comprehension of sensorimotor integration and assist in interpreting exaggerated movement variability in patients. In this study, subjects were placed in a 3-D virtual reality environment and were asked to move from a starting position to one of three targets in the frontal plane with and without visual feedback of the moving limb. The alternating of visual feedback during trials increased uncertainty between the planning and execution phases. The starting limb configurations, adducted and abducted, were varied in separate blocks. Arm configurations were setup by rotating along the shoulder-hand axis to maintain endpoint position. The investigation hypothesized: 1) patterns of endpoint variability of movements would be dependent upon the starting arm configuration and 2) any differences observed would be more apparent in conditions that withheld visual feedback. The results indicated that there were differences in endpoint variability between arm configurations in both visual conditions, but differences in variability increased when visual feedback was withheld. Overall this suggests that in the presence of visual feedback, planning of movements in 3D space mostly uses coordinates that are arm configuration independent. On the other hand, without visual feedback, planning of movements in 3D space relies substantially on intrinsic coordinates.
ContributorsRahman, Qasim (Author) / Buneo, Christopher (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
Description

A survey was created to help gain some insight on the opinions of homeowners across the <br/>Phoenix Metro Area. This survey consisted of 7 questions relating to personal experiences and <br/>the homeowners’ opinions or concerns. The results of the survey showed that there are a few <br/>concerns surrounding solar energy

A survey was created to help gain some insight on the opinions of homeowners across the <br/>Phoenix Metro Area. This survey consisted of 7 questions relating to personal experiences and <br/>the homeowners’ opinions or concerns. The results of the survey showed that there are a few <br/>concerns surrounding solar energy with an emphasis on the cost of maintenance of panels and <br/>the payback period where the homeowners would see a return on their investment. Most of the <br/>homeowners answered that they do not use solar energy but have thought about using it for their <br/>main source of energy before. The homeowners in the survey also thought that solar energy was <br/>overall too expensive and that it would take a long time before they would see any payoff or <br/>savings from the solar panels. It was found that the payback period for panels is around 7 years <br/>and that depending on the size of the solar system installed or on the model used, solar panels <br/>cost much less than many people think. This was found by researching non-biased resources <br/>from government websites and from local energy companies’ websites. To combat the concerns <br/>found from the survey, an infographic was created to help inform the public about solar energy <br/>and allow the homeowners to make decisions that are well informed and not based on <br/>misinformation. The infographic included information related to the survey by explaining the <br/>survey and explaining topics that were of concern to the homeowners who took the survey. In <br/>addition, the infographic displayed information about solar energy and that the decision to use <br/>solar is ultimately up to the audience.

ContributorsGobiel, Erin (Author) / Taylor, David (Thesis director) / Koster, Auriane (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Temperature swing adsorption is a commonly used gas separation technique, and is being<br/>further researched as a method of carbon capture. Carbon capture is becoming increasingly<br/>important as a potential way to slow global warming. In this study, algae-derived activated<br/>carbon adsorbents were analyzed for their carbon dioxide adsorption effectiveness.<br/>Algae-derived carbon adsorbents were

Temperature swing adsorption is a commonly used gas separation technique, and is being<br/>further researched as a method of carbon capture. Carbon capture is becoming increasingly<br/>important as a potential way to slow global warming. In this study, algae-derived activated<br/>carbon adsorbents were analyzed for their carbon dioxide adsorption effectiveness.<br/>Algae-derived carbon adsorbents were synthesized and then studied for their adsorption<br/>isotherms and adsorption breakthrough behavior. From the generated isotherm plots, it was<br/>determined that the carbonization temperature was not high enough and that more batches of<br/>adsorbent would have to be made to more accurately analyze the adsorptive potential of the<br/>algae-derived carbon adsorbent.

ContributorsCiha, Trevor (Author) / Deng, Shuguang (Thesis director) / Taylor, David (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Polymer drug delivery system offers a key to a glaring issue in modern administration routes of drugs and biologics. Poly(lactic-co-glycolic acid) (PLGA) can be used to encapsulate drugs and biologics and deliver them into the patient, which allows high local concentration (compared to current treatment methods), protection of the cargo

Polymer drug delivery system offers a key to a glaring issue in modern administration routes of drugs and biologics. Poly(lactic-co-glycolic acid) (PLGA) can be used to encapsulate drugs and biologics and deliver them into the patient, which allows high local concentration (compared to current treatment methods), protection of the cargo from the bodily environment, and reduction in systemic side effects. This experiment used a single emulsion technique to encapsulate L-tyrosine in PLGA microparticles and UV spectrophotometry to analyze the drug release over a period of one week. The release assay found that for the tested samples, the released amount is distinct initially, but is about the same after 4 days, and they generally follow the same normalized percent released pattern. The experiment could continue with testing more samples, test the same samples for a longer duration, and look into higher w/w concentrations such as 20% or 50%.

ContributorsSeo, Jinpyo (Author) / Vernon, Brent (Thesis director) / Pal, Amrita (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

I spent the first half of my project researching Mexican cuisine, as well as the history of traditional recipes and how various ingredients became incorporated into the food of the Southwest region. The second half of my project was focused on creating a video to document my family's recipe for

I spent the first half of my project researching Mexican cuisine, as well as the history of traditional recipes and how various ingredients became incorporated into the food of the Southwest region. The second half of my project was focused on creating a video to document my family's recipe for making tamales. I analyzed the recipe and its larger cultural and social implications which I presented with a PowerPoint.

ContributorsSantoro, Natalie Ocelia (Author) / Velez-Ibanez, Carlos (Thesis director) / Dixon, Kathleen (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Traumatic brain injury (TBI) is a widespread health issue that affects approximately 1.7 million lives per year. The effects of TBI go past the incident of primary injury, as chronic damage can follow for years and cause irreversible neurodegeneration. A potential strategy for repair that has been studied is cell

Traumatic brain injury (TBI) is a widespread health issue that affects approximately 1.7 million lives per year. The effects of TBI go past the incident of primary injury, as chronic damage can follow for years and cause irreversible neurodegeneration. A potential strategy for repair that has been studied is cell transplantation, as neural stem cells improve neurological function. While promising, neural stem cell transplantation presents challenges due to a relatively low survival rate post-implantation and issues with determining the optimal method of transplantation. Shear-thinning hydrogels are a type of hydrogel whose linkages break when under shear stress, exhibiting viscous flow, but reform and recover upon relaxation. Such properties allow them to be easily injected for minimally invasive delivery, while also shielding encapsulated cells from high shear forces, which would normally degrade the function and viability of such cells. As such, it is salient to research whether shear-thinning hydrogels are feasible candidates in neural cell transplantation applications for neuroregenerative medicine. In this honors thesis, shear-thinning hydrogels were formed through guest-host interactions of adamantane modified HA (guest ad-HA) and beta-cyclodextrin modified HA (host CD-HA). The purpose of the study was to characterize the injection force profile of different weight percentages of the HA shear-thinning hydrogel. The break force and average glide force were also compared between the differing weight percentages. By understanding the force exerted on the hydrogel when being injected, we could characterize how neural cells may respond to encapsulation and injection within HA shear-thinning hydrogels. We identified that 5% weight HA hydrogel required greater injection force than 4% weight HA hydrogel to be fully delivered. Such contexts are valuable, as this implies that higher weight percentage gels impart higher shear forces on encapsulated cells than lower weight gels. Further study is required to optimize our injection force system’s sensitivity and to investigate if cell encapsulation increases the force required for injection.

ContributorsZhang, Irene (Author) / Stabenfeldt, Sarah (Thesis director) / Holloway, Julianne (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

There are many challenges in designing neuroprostheses and one of them is to maintain proper axon selectivity in all situations. This project is based on an electrode that is implanted into a fascicle in a peripheral nerve and used to provide tactile sensory feedback of a prosthetic arm. This fascicle

There are many challenges in designing neuroprostheses and one of them is to maintain proper axon selectivity in all situations. This project is based on an electrode that is implanted into a fascicle in a peripheral nerve and used to provide tactile sensory feedback of a prosthetic arm. This fascicle can undergo mechanical deformation during every day motion. This work aims to characterize the effect of fascicle deformation on axon selectivity and recruitment when electrically stimulated using hybrid modeling. The main framework consists of combining finite element modeling (FEM) and simulation environment NEURON. A suite of programs was developed to first populate a fascicle with axons followed by deforming the fascicle and rearranging axons accordingly. A model of the fascicle with an implanted electrode is simulated to find the electrical potential profile through FEM. The potential profile is then used to compare which axons are activated in the two conformations of the fascicle using NERUON.

ContributorsDileep, Devika (Author) / Abbas, James (Thesis director) / Sadleir, Rosalind (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05