Filtering by
- Creators: Marine Biological Laboratory Archives




A survey was created to help gain some insight on the opinions of homeowners across the <br/>Phoenix Metro Area. This survey consisted of 7 questions relating to personal experiences and <br/>the homeowners’ opinions or concerns. The results of the survey showed that there are a few <br/>concerns surrounding solar energy with an emphasis on the cost of maintenance of panels and <br/>the payback period where the homeowners would see a return on their investment. Most of the <br/>homeowners answered that they do not use solar energy but have thought about using it for their <br/>main source of energy before. The homeowners in the survey also thought that solar energy was <br/>overall too expensive and that it would take a long time before they would see any payoff or <br/>savings from the solar panels. It was found that the payback period for panels is around 7 years <br/>and that depending on the size of the solar system installed or on the model used, solar panels <br/>cost much less than many people think. This was found by researching non-biased resources <br/>from government websites and from local energy companies’ websites. To combat the concerns <br/>found from the survey, an infographic was created to help inform the public about solar energy <br/>and allow the homeowners to make decisions that are well informed and not based on <br/>misinformation. The infographic included information related to the survey by explaining the <br/>survey and explaining topics that were of concern to the homeowners who took the survey. In <br/>addition, the infographic displayed information about solar energy and that the decision to use <br/>solar is ultimately up to the audience.
This paper outlines the design and testing of a z-scan spectrometer capable of measuring the third order refraction index of liquids. The spectrometer underwent multiple redesigns, with each explored in this paper with their benefits and drawbacks discussed. The first design was capable of measuring the third order refraction index for glass, and found a value of 8.43 +- 0.392 x 10^(-16) cm^2/W for the glass sample, with the literature stating glass has a refraction index between 1-100 x 10^(-16) cm^2/W. The second design was capable of measuring the third order refraction index of liquids, and found values of 1.23 $\pm$ 0.121 $\e{-16}$ and 9.43 +- 1.00 x 10^(-17) cm^2/W for water and ethanol respectively, with literature values of 2.7 x 10^(-16) and 5.0 x 10^(-17) cm^2/W respectively. The third design gave inconclusive results due to extreme variability in testing, and and the fourth design outlined has not been tested yet due to time constraints.
Temperature swing adsorption is a commonly used gas separation technique, and is being<br/>further researched as a method of carbon capture. Carbon capture is becoming increasingly<br/>important as a potential way to slow global warming. In this study, algae-derived activated<br/>carbon adsorbents were analyzed for their carbon dioxide adsorption effectiveness.<br/>Algae-derived carbon adsorbents were synthesized and then studied for their adsorption<br/>isotherms and adsorption breakthrough behavior. From the generated isotherm plots, it was<br/>determined that the carbonization temperature was not high enough and that more batches of<br/>adsorbent would have to be made to more accurately analyze the adsorptive potential of the<br/>algae-derived carbon adsorbent.
The goal of this project was to design and create a genetic construct that would allow for <br/>tumor growth to be induced in the center of the wing imaginal disc of Drosophila larvae, the <br/>R85E08 domain, using a heat shock. The resulting transgene would be combined with other <br/>transgenes in a single fly that would allow for simultaneous expression of the oncogene and, in <br/>the surrounding cells, other genes of interest. This system would help establish Drosophila as a <br/>more versatile and reliable model organism for cancer research. Furthermore, pilot studies were <br/>performed, using elements of the final proposed system, to determine if tumor growth is possible <br/>in the center of the disc, which oncogene produces the best results, and if oncogene expression <br/>induced later in development causes tumor growth. Three different candidate genes were <br/>investigated: RasV12, PvrACT, and Avli.
Microfluidic devices represent a growing technology in the world of analytical chemistry. Serial femtosecond crystallography (SFX) utilizes microfluidic devices to generate droplets of an aqueous buffer containing protein crystals, which are then fired out as a jet in the beam of an X-ray free electron laser (XFEL). A crucial part of the device is its method of droplet detection. This project presents a design for a capacitive sensor that uses a unique electrode configuration to detect the difference in capacitance between the aqueous and oil phases. This design was developed using MATLAB and COMSOL Multiphysics simulations and printed using high-resolution 3D printing. Results show that this design can successfully distinguish between the two immiscible liquids, confirming it as a possible detection method in future SFX experiments.
Language has a critical role as a social determinant of health and a source of healthcare disparities. Rhetorical devices are ubiquitous in medicine and are often used to persuade or inform care team members. Rhetorical devices help a healthcare team acknowledge and interpret narratives. For example, metaphors are frequently used as rhetorical devices by patients to describe cancer, including winning or losing a battle, surviving a fight, war, potentially implying that the patient feels helpless like a pawn fighting in a struggle directed by the physician, thus reducing patient autonomy and agency. However, this occidental approach is flawed because it excessively focuses on the individual's agency and marginalizes external factors, such as cultural beliefs and social support (Sontag, 1989). Although there is a large body of research about how the rhetoric of medicine affects patients in the United States, there is a lack of such research about how patient experiences' rhetoric can help increase the understanding of Latino populations' unique social determinants. This creative project aims to analyze the rhetorical differences in the description of disease amongst Latino and American communities, translating to creating an educational module for a Spanish for biomedical sciences class. The objective is to increase future healthcare professionals' ability to understand how the composition of descriptions and medical rhetoric in different mediums of humanities can serve as critical tools to analyze social determinants in Latino healthcare delivery.