Matching Items (1,931)
Filtering by

Clear all filters

Description

A survey was created to help gain some insight on the opinions of homeowners across the <br/>Phoenix Metro Area. This survey consisted of 7 questions relating to personal experiences and <br/>the homeowners’ opinions or concerns. The results of the survey showed that there are a few <br/>concerns surrounding solar energy

A survey was created to help gain some insight on the opinions of homeowners across the <br/>Phoenix Metro Area. This survey consisted of 7 questions relating to personal experiences and <br/>the homeowners’ opinions or concerns. The results of the survey showed that there are a few <br/>concerns surrounding solar energy with an emphasis on the cost of maintenance of panels and <br/>the payback period where the homeowners would see a return on their investment. Most of the <br/>homeowners answered that they do not use solar energy but have thought about using it for their <br/>main source of energy before. The homeowners in the survey also thought that solar energy was <br/>overall too expensive and that it would take a long time before they would see any payoff or <br/>savings from the solar panels. It was found that the payback period for panels is around 7 years <br/>and that depending on the size of the solar system installed or on the model used, solar panels <br/>cost much less than many people think. This was found by researching non-biased resources <br/>from government websites and from local energy companies’ websites. To combat the concerns <br/>found from the survey, an infographic was created to help inform the public about solar energy <br/>and allow the homeowners to make decisions that are well informed and not based on <br/>misinformation. The infographic included information related to the survey by explaining the <br/>survey and explaining topics that were of concern to the homeowners who took the survey. In <br/>addition, the infographic displayed information about solar energy and that the decision to use <br/>solar is ultimately up to the audience.

ContributorsGobiel, Erin (Author) / Taylor, David (Thesis director) / Koster, Auriane (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Supported catalytic nanoparticles undergo rapid structural transformations faster than many transmission electron microscopes (TEMs) can track. This is the case with platinum nanoparticles supported on cerium oxide (Pt/CeO2) in a CO and O2 gaseous environment. By furthering our understanding of the structural dynamics of the Pt/CeO2 system, improved catalyst design

Supported catalytic nanoparticles undergo rapid structural transformations faster than many transmission electron microscopes (TEMs) can track. This is the case with platinum nanoparticles supported on cerium oxide (Pt/CeO2) in a CO and O2 gaseous environment. By furthering our understanding of the structural dynamics of the Pt/CeO2 system, improved catalyst design principles may be derived to enhance the efficiency of this catalyst. Developing static models of a 2 nm Pt nanoparticle supported on CeO2 and simulating TEM images of the models was found to create similar images to those seen in experimental TEM time-resolved series of the system. Rotations of static models on a ceria support provides a way to understand the experimental samples in three dimensions, which is difficult in two dimensional TEM images. This project expands the possibilities of interpreting TEM images of catalytic systems.

ContributorsBlock, Claire (Author) / Crozier, Peter (Thesis director) / Muhich, Christopher (Committee member) / Materials Science and Engineering Program (Contributor, Contributor) / Watts College of Public Service & Community Solut (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Temperature swing adsorption is a commonly used gas separation technique, and is being<br/>further researched as a method of carbon capture. Carbon capture is becoming increasingly<br/>important as a potential way to slow global warming. In this study, algae-derived activated<br/>carbon adsorbents were analyzed for their carbon dioxide adsorption effectiveness.<br/>Algae-derived carbon adsorbents were

Temperature swing adsorption is a commonly used gas separation technique, and is being<br/>further researched as a method of carbon capture. Carbon capture is becoming increasingly<br/>important as a potential way to slow global warming. In this study, algae-derived activated<br/>carbon adsorbents were analyzed for their carbon dioxide adsorption effectiveness.<br/>Algae-derived carbon adsorbents were synthesized and then studied for their adsorption<br/>isotherms and adsorption breakthrough behavior. From the generated isotherm plots, it was<br/>determined that the carbonization temperature was not high enough and that more batches of<br/>adsorbent would have to be made to more accurately analyze the adsorptive potential of the<br/>algae-derived carbon adsorbent.

ContributorsCiha, Trevor (Author) / Deng, Shuguang (Thesis director) / Taylor, David (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

In a COVID-19 world, student engagement has suffered drastically as organizations and universities shifted to an online format. Yet, there is still an opportunity and a space for digital content creation to bridge the gap in a virtual and hybrid university lifestyle. This project looks at how student groups can

In a COVID-19 world, student engagement has suffered drastically as organizations and universities shifted to an online format. Yet, there is still an opportunity and a space for digital content creation to bridge the gap in a virtual and hybrid university lifestyle. This project looks at how student groups can still engage students at ASU Tempe through digital content creation and which tools to use to enter the space.

ContributorsJavangula, Rahul (Author) / O'Flaherty, Katherine (Thesis director) / Shipley, Austen (Committee member) / Watts College of Public Service & Community Solut (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

For those living lives devoted to taking care of others, it can be difficult to remember to take care of themselves. This thesis project is a review of quantitative and qualitative literature pertaining to self-care for the caregivers of Alzheimer's and dementia patients. Three nursing diagnoses and related nursing interventions

For those living lives devoted to taking care of others, it can be difficult to remember to take care of themselves. This thesis project is a review of quantitative and qualitative literature pertaining to self-care for the caregivers of Alzheimer's and dementia patients. Three nursing diagnoses and related nursing interventions were created using data from the evidence-based literature. With the proper knowledge and assistance, caregivers can better prepare for the future and participate in health-promoting self-care activities which may improve their quality of life.

ContributorsSchmidt, Anna Claire (Author) / Fries, Kathleen (Thesis director) / Barnum, Leslie (Committee member) / Edson College of Nursing and Health Innovation (Contributor) / Watts College of Public Service & Community Solut (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Americans today face an age of information overload. With the evolution of Media 3.0, the internet, and the rise of Media 3.5—i.e., social media—relatively new communication technologies present pressing challenges for the First Amendment in American society. Twentieth century law defined freedom of expression, but in an information-limited world. By

Americans today face an age of information overload. With the evolution of Media 3.0, the internet, and the rise of Media 3.5—i.e., social media—relatively new communication technologies present pressing challenges for the First Amendment in American society. Twentieth century law defined freedom of expression, but in an information-limited world. By contrast, the twenty-first century is seeing the emergence of a world that is overloaded with information, largely shaped by an “unintentional press”—social media. Americans today rely on just a small concentration of private technology powerhouses exercising both economic and social influence over American society. This raises questions about censorship, access, and misinformation. While the First Amendment protects speech from government censorship only, First Amendment ideology is largely ingrained across American culture, including on social media. Technological advances arguably have made entry into the marketplace of ideas—a fundamental First Amendment doctrine—more accessible, but also more problematic for the average American, increasing his/her potential exposure to misinformation. <br/><br/>This thesis uses political and judicial frameworks to evaluate modern misinformation trends, social media platforms and current misinformation efforts, against the background of two misinformation accelerants in 2020, the COVID-19 pandemic and U.S. presidential election. Throughout history, times of hardship and intense fear have contributed to the shaping of First Amendment jurisprudence. Thus, this thesis looks at how fear can intensify the spread of misinformation and influence free speech values. Extensive research was conducted to provide the historical context behind relevant modern literature. This thesis then concludes with three solutions to misinformation that are supported by critical American free speech theory.

ContributorsCochrane, Kylie Marie (Author) / Russomanno, Joseph (Thesis director) / Roschke, Kristy (Committee member) / School of Public Affairs (Contributor) / Walter Cronkite School of Journalism and Mass Comm (Contributor, Contributor) / Watts College of Public Service & Community Solut (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The ongoing Global Coronavirus Pandemic has been upheving social norms for over a year at this point. For countless people, our lives look very different at this point in time than they did before the pandemic began. Quarantine, Shelter in Place, Work from Home, and Online classes have led global

The ongoing Global Coronavirus Pandemic has been upheving social norms for over a year at this point. For countless people, our lives look very different at this point in time than they did before the pandemic began. Quarantine, Shelter in Place, Work from Home, and Online classes have led global populations to become less active leading to an increase in sedentary lifestyles. The final impact of this consequence is unknown, but emerging studies have led to concrete evidence of decreased physical and mental wellbeing, particularly in children. VirusFreeSports was the brainchild of three ASU Honors students who sought to remedy these devastating consequences by creating environments where children can participate in sports and exercise safely, free of the threat COVID-19 or other transmissible illnesses. The ultimate goal for the project team was to build traction for their idea, which culminated in a video pitch sent to potential investors. Although largely created as an exercise and we did not create a full certification course, merely a prototype through a website with sample questions to gauge interest, the project was a success as a large target market for this product was identified that showed great promise. Our team believes that early entrance to the market, as well as the lack of any other competitors would give the team a tremendous advantage in creating an impactful and influential service.

ContributorsVrbanac, Matthew Thomas (Co-author) / Tanveer, Samad (Co-author) / Israel, Natasha (Co-author) / Byrne, Jared (Thesis director) / Lee, Chris (Committee member) / Kunowski, Jeff (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Many nanotechnology-related principles can be demonstrated in a way that is understandable for elementary school-aged children through at-home activity videos. As a part of a National Science Foundation funded grant, Dr. Qing Hua Wang’s research group at Arizona State University developed a nanotechnology-related activity website, Nano@Home, for students. In conjunction

Many nanotechnology-related principles can be demonstrated in a way that is understandable for elementary school-aged children through at-home activity videos. As a part of a National Science Foundation funded grant, Dr. Qing Hua Wang’s research group at Arizona State University developed a nanotechnology-related activity website, Nano@Home, for students. In conjunction with ASU’s virtual Open Door 2021, this creative project aimed to create activity videos based on the Nano@Home website to make the activities more interactive for students.

ContributorsOliver, Ruth Kaylyn (Author) / Wang, Qing Hua (Thesis director) / Krause, Stephen (Committee member) / Materials Science and Engineering Program (Contributor, Contributor) / Watts College of Public Service & Community Solut (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Human beings have long sought to conquer the unconquerable and to push the boundaries of human endurance. There are few such endeavors more challenging than venturing into the coldest and harshest environments on the planet. The challenges these adventurers face are nearly countless, but one that is often underestimated is

Human beings have long sought to conquer the unconquerable and to push the boundaries of human endurance. There are few such endeavors more challenging than venturing into the coldest and harshest environments on the planet. The challenges these adventurers face are nearly countless, but one that is often underestimated is the massive risk of dehydration in high mountains and the lack of sufficient technology to meet this important need. Astronauts and mountaineers of NASA's Johnson Space Center have created a technology that solves this problem: a freeze-resistant hydration system that helps stop water from freezing at sub-zero temperatures by using cutting-edge technology and materials science to insulate and heat enough water to prevent dehydration over the course of the day, so that adventurers no longer need to worry about their equipment stopping them. This patented technology is the basis of the founding of Aeropak, an advanced outdoor hydration brand developed by three ASU students (Kendall Robinson, Derek Stein, and Thomas Goers) in collaboration with W.P. Carey’s Founder’s Lab. The primary goal was to develop traction among winter sport enthusiasts to create a robust customer base and evaluate the potential for partnership with hydration solution companies as well as direct sales through online and brick-and-mortar retail avenues. To this end, the Aeropak team performed market research to determine the usefulness and need for the product through a survey sent out to a number of outdoor sporting clubs on Arizona State University’s campus. After determining an interest in a potential product, the team developed a marketing strategy and business model which was executed through Instagram as well as a standalone website, with the goal of garnering interest and traction for a future product. Future goals of the project will be to bring a product to market and expand Aeropak’s reach into a variety of winter sport subcommunities, as well as evaluate the potential for further expansion into large-scale retailers and collaboration with established companies.

ContributorsStein, Derek W (Co-author) / Robinson, Kendall (Co-author) / Goers, Thomas (Co-author) / Byrne, Jared (Thesis director) / Sebold, Brent (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Fire is a naturally-occurring disruptive ecological force that is an essential part of certain ecosystems, and has historically been a tool used by indigenous fire stewards to maintain the health of the land. In the past century, fire has been severely suppressed throughout many areas of the Western United States

Fire is a naturally-occurring disruptive ecological force that is an essential part of certain ecosystems, and has historically been a tool used by indigenous fire stewards to maintain the health of the land. In the past century, fire has been severely suppressed throughout many areas of the Western United States as Western colonization and the suppression of native traditional ecological knowledge took place, causing a severe decline in ecosystem health and the accumulation of flammable vegetation, which has more recently contributed towards a frequency of catastrophic, high-intensity wildfires. Current fire management challenges include balancing social and ecological perspectives. In Colorado and other areas of the country, community wildfire protection plans (CWPP) are evolving as a means to involve a variety of community stakeholders in fire management decisions. Using Colorado CWPP boundaries as a social management unit and endangered species ranges as an ecological management unit, I analyzed the spatial overlap of these different factors. Since each CWPP has its own fire management policies, I drew implications from the results for which important factors different CWPPs should consider.

ContributorsAzuma, Erin (Author) / Kroetz, Kailin (Thesis director) / Iacona, Gwen (Committee member) / Hamilton, Matthew (Committee member) / School of Life Sciences (Contributor) / Watts College of Public Service & Community Solut (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / Thunderbird School of Global Management (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05