Matching Items (324)
Description
Animation is a medium that is not taken as seriously as live-action television and film. This thesis focuses on the representation of LGBT characters in American animation and attempts to give a rigorous analysis on a medium that should be taken seriously. Analysis is done on the stereotypes and coding from various animated shows, such as South Park, Family Guy, and Steven Universe. The shows are further divided into adult and children's animation, in which the analysis will track how LGBT characters are represented and have progressed in both. The thesis describes how problematic these characters may potentially be and how the images may project certain cultural and social attitudes towards the LGBT community. The thesis also considers the future of queer visibility and representation in other mediums, other than just in broadcast television. It was found that representation begins in the early 90s in adult comedy animation with Big Gay Al in South Park. In adult animation, the focus is usually more on the use of stereotypes and how these stereotypes are used for comedy. These stereotypes are sometimes enforced or subverted, depending on the show. It was also found that in adult animation, there has been a shift towards normalizing queer characters to fit a heteronormative framework. For children's animation, the sexuality of a character is subtler and coded with context clues. Some children and teen shows have decided to reveal the sexuality of certain characters in the last episode of the series. Children's animation also follows a similar trend that adult animation has taken with the normalization of queer characters.
ContributorsVuong, Hansen (Author) / Dove-Viebahn, Aviva (Thesis director) / Bryant, Jason (Committee member) / Chemical Engineering Program (Contributor) / School of Film, Dance and Theatre (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
In the pursuit of sustainable sources of energy that do less harm to the environment, numerous technologies have been developed to reduce carbon emissions in the atmosphere. The implementation of carbon capture and storage systems (CCS) has played a crucial role in reducing CO2 emissions, but depleting storage reserves and ever-increasing costs of sequestrating captured CO2 has prompted the idea of utilizing CO2 as soon as it is produced (i.e. carbon capture and utilization, or CCU) and storing any remaining amounts. This project analyzes the cost of implementing a delafossite CuFeO2 backed CCU system for the average US coal-burning power plant with respect to current amounts of CO2 captured. Beyond comparing annual maintenance costs of CCU and CCS systems, the project extends previous work done on direct CO2 conversion to liquid hydrocarbons by providing a protocol for determining how the presence of NO affects the products formed during pure CO2 hydrogenation. Overall, the goal is to gauge the applicability of CCU systems to power plants with a sub 10-year lifespan left, whilst observing the potential revenue that can be potentially generated from CCU implementation. Under current energy costs ($0.12 per kWh), a delafossite CuFeO2 supported CCU system would generate over $729 thousand in profit for an average sized supercritical pulverized coal power (SCPC) plants selling diesel fuel created from CO2 hydrogenation. This amount far exceeds the cost of storing captured CO2 and suggests that CCU systems can be profitable for SCPC power plants that intend to burn coal until 2025.
ContributorsShongwe, Thembelihle Wakhile (Author) / Andino, Jean (Thesis director) / Otsengue, Thonya (Committee member) / Economics Program in CLAS (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
This thesis investigates the effects of differing diameters, removal of antistatic forces, and varying moisture content on the shear stress properties of granular glass beads through use of a Freeman FT4 Powder Rheometer. A yield locus results from plotting the experimental shear stress values (kPa) vs. the applied normal stress value (kPa). From these yield loci, Mohr’s Circles are constructed to quantitatively describe flowability of tested materials in terms of a flow function parameter.
By testing 120-180 µm, 120-350 µm, 250-350 µm, and 430-600 µm dry glass bead ranges, an increase in diameter size is seen to result in both higher shear stress values and an increasing slope of plotted shear stress vs. applied normal stress. From constructed Mohr’s Circles, it is observed that flow function is quite high amongst tested dry materials, all yielding values above 20. A high flow function value (>10) is indicative of a good flow.1 Flow function was observed to increase with increasing diameter size until a slight drop was observed at the 430-600 µm range, possibly due to material quality or being near the size limitation of testing within the FT4, where materials must be less than 1000 µm in diameter.However, no trend could be observed in flowability as diameter size was increased.
Through the use of an antistatic solution, the effect of electrostatic forces generated by colliding particles was tested. No significant effect on the shear stress properties was observed.
Wet material testing occurred with the 120-180 µm glass bead range using a deionized water content of 0%, 1%, 5%, 15%, and 20% by mass. The results of such testing yielded an increase in shear stress values at applied normal stress values as moisture content is increased, as well as a decrease in the resulting flow function parameter. However, this trend changed as 20% moisture content was achieved; the wet material became a consistent paste, and a large drop in shear stress values occurred along with an increase in flowability.
By testing 120-180 µm, 120-350 µm, 250-350 µm, and 430-600 µm dry glass bead ranges, an increase in diameter size is seen to result in both higher shear stress values and an increasing slope of plotted shear stress vs. applied normal stress. From constructed Mohr’s Circles, it is observed that flow function is quite high amongst tested dry materials, all yielding values above 20. A high flow function value (>10) is indicative of a good flow.1 Flow function was observed to increase with increasing diameter size until a slight drop was observed at the 430-600 µm range, possibly due to material quality or being near the size limitation of testing within the FT4, where materials must be less than 1000 µm in diameter.However, no trend could be observed in flowability as diameter size was increased.
Through the use of an antistatic solution, the effect of electrostatic forces generated by colliding particles was tested. No significant effect on the shear stress properties was observed.
Wet material testing occurred with the 120-180 µm glass bead range using a deionized water content of 0%, 1%, 5%, 15%, and 20% by mass. The results of such testing yielded an increase in shear stress values at applied normal stress values as moisture content is increased, as well as a decrease in the resulting flow function parameter. However, this trend changed as 20% moisture content was achieved; the wet material became a consistent paste, and a large drop in shear stress values occurred along with an increase in flowability.
ContributorsKleppe, Cameron Nicholas (Author) / Emady, Heather (Thesis director) / Vajrala, Spandana (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
Description
Obtaining access to clean water is a global problem that is becoming more important with increasing population and advancing technology. Desalination through reverse osmosis (RO) is a promising technology takes advantage of the global supply of saline water to augment its limited freshwater reservoirs. To increase RO membrane performance, the feedwater is pretreated to take any excess pollutants out before the desalination. These pretreatment membranes are susceptible to fouling, which reduces efficiency and drives up costs of the overall process. Increasing the hydrophilicity of these membranes would reduce fouling, and electrospinning is a production method of pretreatment membranes with the capability to control hydrophilicity. This work explores how the composition of electrospun fibrous membranes containing blends of hydrophilic and hydrophobic polymers affects membrane characteristics such as wettability as well as filtration performance. Nonwoven, nanoscale membranes were prepared using electrospinning with a targeted application of pretreatment in water filtration. Using a rotating collector, electrospun mats of hydrophobic poly(vinyl chloride) (PVC) and hydrophilic poly(vinyl alcohol) (PVA) were simultaneously deposited from separate polymer solutions, and their polymer compositions were then characterized using Fourier Transform Infrared (FTIR) spectra. The data did not reveal a reliable correlation established between experimental control variables like flow rate and membrane composition. However, when the membranes' hydrophilicity was analyzed using static water contact angle measurements, a trend between PVA content and hydrophilicity was seen. This shows that the hypothesis of increasing PVA content to increase hydrophilicity is reliable, but with the current experimental design the PVA content is not controllable. Therefore, the primary future work is making a new experimental setup that will be able to better control membrane composition. Filtration studies to test for fouling and size exclusion will be performed once this control is obtained.
ContributorsTronstad, Zachary (Author) / Green, Matthew (Thesis director) / Holloway, Julianne (Committee member) / Epps, Thomas (Committee member) / Chemical Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
Description
This study aims to determine the feasibility of producing mechanophore-incorporated epoxy that can be healed. This was accomplished by grafting a synthesized mechanophore into tris(2-aminoethyl)amine to create a new epoxy hardener. Then this branched hardener was combined with a second hardener, diethylenetriamine (DETA). A proper ratio of the branched hardener to the DETA will ensure that the created epoxy will retain the force responsive characteristics without a noticeable decline in both the physical and thermal properties. Furthermore, it was desired that the natural structure of the epoxy would be left in place, and there would only be enough branched hardener present to elicit a force response and provide the possibility for healing. The two hardeners would then be added to Diglycidyl Ether of Bisphenol F (DGEBPF), which is the epoxy resin. The mechanophore-incorporated epoxy was compared to a standard epoxy—just DETA and DGEBPF—and it was determined that the incorporation of the mechanophore led to an 8.2 degrees Celsius increase in glass transition temperature, and a 33.0% increase in cross link density. This justified the mechanophore-incorporated epoxy as a feasible alternative to the standard, as its primary thermal and physical properties were not only equal, but superior. Then samples of the mechanophore-incorporated epoxy were damaged with a 3% tensile strain. This would cause a cycloreversion in the central cyclobutane inside of the mechanophore. Then they were healed with UV light, which would redimerize the severed hardener moieties. The healed samples saw a 4.69% increase in cross-link density, demonstrating that healing was occurring.
ContributorsPauley, Bradley (Author) / Dai, Lenore (Thesis director) / Gunckel, Ryan (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
Description
This thesis investigates an interpenetrating network of polyacrylamide and poly acrylic acid for use in a dynamic tactile display, which presents traditionally two-dimensional electronic screens as three-dimensional topographical models that can be experienced through touch. This kind of display would allow for greater access to traditionally visual information for the visually impaired. This hydrogel demonstrates Upper Critical Solution Temperature (UCST) near room temperature which facilitates a swelling transition, characterized by a sharp increase in swelling as this temperature is surpassed. Through the utilization of light responsive additives, light can trigger this shift, as the additives harness visible light, convert it into heat to raise the gel’s temperature, and increase the volume of the gel. Light-responsive additives explored include chlorophyllin, gold nanoparticles, and carbon black. Each of these additives required unique synthesis planning and strategies in order to optimize the performance of the gels. Synthesized gels were characterized using thermal swelling tests, light response tests and compression tests to determine the material strength. The best performing additive was chlorophyllin and allowed for a 20.8%±4.5% percent weight increase upon exposure to light for 10 minutes. In addition to investigating light-responsive additives, modifications were pursued to alter the overall UCST behavior, such as the addition of sodium chloride. By adding sodium chloride into the hydrogel, the gel was found to have a wider transition. Overall, light-responsive behavior was developed, and further work can be done in improving the response time and degree of swelling in order to make this material more viable for use in a dynamic tactile display.
ContributorsSitterle, Philip Kerry (Author) / Dai, Lenore (Thesis director) / Xu, Yifei (Committee member) / School of Music (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
Description
In the development of personalized medicine and many other clinical studies, biospecimen integrity serves as the prerequisite for not only the accurate derivation of patient- and disease-specific molecular data from biological specimens but the meaningful downstream validation of biomarkers. However, a large number of preanalytical variables may influence the quality of biospecimens in an undesired way and ultimately render the samples unsuitable for molecular analysis. The limited ability to directly reduce discrepancies caused by preanalytical variables gives rise to the need for development and retrospective application of appropriate tests for assessment of biospecimen integrity. Nevertheless, the most standard approaches to assessing biospecimen integrity involve nontrivial procedures. Thus, the need for quality control tools or tests that are readily applicable and can produce results in a straightforward way becomes critical. As one of the major ex vivo biomolecular degradation mechanisms, oxidation that occurs when blood plasma and serum samples are exposed to thawed states during storage and processing is hard to forestall and detect. In an attempt to easily detect and monitor the degree of oxidation, the technique of Fluorescence Resonance Energy Transfer (FRET) was examined to determine whether this concept could be employed to monitor exposure of samples to thawed conditions when controlled by spontaneous oxidative disulfide bonding. The intended mode of usage was envisioned as a fluorescence liquid being stored in a separate compartment but within the same test tube as archived plasma and serum samples. This would allow the assessment of sample integrity by direct visualization of fluorescence under a hand-held black light. The fluorescent dynamic range as well as kinetic control of the reaction were studied. While the addition of Cu(II) proved to facilitate excellent dynamic range with regard to fluorescence quenching, the kinetics of the reaction were too rapid for practical use. Further investigation revealed that the fluorescence quenching mechanism might have actually occurred via Intramolecular Charge Transfer (ICT) rather than FRET mediated by oxidative disulfide bond formation. Introduction of Cu(II) via copper metal slowed fluorescence quenching to the point of practical utility; facilitating demonstration that storing at room temperature, refrigerating or freezing the samples delayed fluorescence quenching to different extents. To establish better kinetic control, future works will focus on establishing controlled, thoroughly understood kinetic release of Cu(II) from copper metal.
ContributorsZhang, Zihan (Author) / Borges, Chad (Thesis director) / Emady, Heather (Committee member) / Williams, Peter (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
Description
When it comes to the topic of chemical engineering, the general public has a set of neutral, if slightly uninformed perceptions that are largely tempered by the initial emotional responses to the field and its associated topics. These topics include the differentiation between chemical engineers and chemists, the importance and potential danger of the products they produce, as well as the association of the subject matter with less than favorable secondary education experiences. This thesis consists of first assessing the opinions of a population meant to represent the general public regarding these subjects, then exploring the potential improvements of opinion and understanding that may be yielded from presenting the subject matter by way of a concise learning tool, such as a video. The results of this effort showed that factual understanding can be at least incrementally improved for 18% of participants through this method, while the effect on opinions can range from being improved to maintaining an enduring indifference, with an average of 17% of participants seeing improvement. Further iteration of this methodology with more consistent, impartial survey methods and refined questions could potentially yield more noteworthy improvements within the subjective domain, with the resultant learning tool of that iteration being applicable as not only an instrument of educating the general public, but also as a means to recruit potential students to the ASU chemical engineering degree program.
ContributorsJanovsky, Trey Patrick (Author) / Taylor, David (Thesis director) / Martin, Thomas (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
The purpose of this project is to investigate the swelling ratio exhibited due to photothermal effects of double network polyacrylamide poly(acrylic acid) hydrogels synthesized with carbon black as a light-sensitive chromophore. Optimal carbon black dispersion was achieved in solutions through sonication, using V9A32 carbon black, where dynamic light scattering recorded particle diameters in the range of 195.0-375.8 nanometers for water/carbon black mixtures, 242.4-262.6 nanometers for monomer/carbon black mixtures without initiator, and 1109.3-1783.9 nanometers for monomer/carbon black mixtures including initiator. The double network polyacrylamide poly(acrylic acid) hydrogels with carbon black yielded weight increases of 0.126% and 6.043%, respectively, after 2 minutes and 10 minutes of being exposed to a light stimulus; compared to previous work which showed a double network polyacrylamide poly(acrylic acid) hydrogel with chlorophyllin yielded weight increases of 18.3% and 20.8%, respectively, after 2 minutes and 10 minutes of being exposed to a light stimulus, the carbon black resulted in a less robust response. Future work for application of the light-responsive hydrogels includes the development of a screen covering that will be made of the hydrogels. This covering is intended for use on LED screen displays, where a light change will result in a protrusion from the screen. The purpose behind this application is that technology users who are visually impaired can still determine what their LED device is trying to communicate with them.
ContributorsReimann, Morgan Elizabeth (Co-author) / Yifei, Xu (Co-author) / Dai, Lenore (Co-author, Thesis director) / Xu, Yifei (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
The inability of a single strain of bacteria to simultaneously and completely consume multiple sugars, such as glucose and xylose, hinder industrial microbial processes for ethanol and lactate production. To overcome this limitation, I am engineering an E. coli co-culture system consisting of two ‘specialists'. One has the ability to only consume xylose and the other only glucose. This allows for co-utilization of lignocellulose-derived sugars so both sugars are completely consumed, residence time is reduced and lactate and ethanol titers are maximized.
ContributorsAyla, Zeynep Ece (Author) / Nielsen, David (Thesis director) / Flores, Andrew (Committee member) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05