Matching Items (324)
Description
Layered double hydroxides (LDHs), also known as hydrotalcite-like materials, are extensively used as precursors for the preparation of (photo-)catalysts, electrodes, magnetic materials, sorbents, etc. The synthesis typically involves the transformation to the corresponding mixed metal oxide via calcination, resulting in atomically dispersed mixed metal oxides (MMOs). This process alters the porosity of the materials, with crucial implications for the performance in many applications. Yet, the mechanisms of pore formation and collapse are poorly understood. Combining an integrated in situ and ex situ characterization approach, here we follow the evolution of porosity changes during the thermal decomposition of LDHs integrating different divalent (Mg, Ni) and trivalent (Al, Ga) metals. Variations in porous properties determined by high-resolution argon sorption are linked to the morphological and compositional changes in the samples by in situ transmission electron microscopy coupled with energy dispersive X-ray spectroscopy, which is facilitated by the synthesis of well crystallized LDHs of large crystal size. The observations are correlated with the phase changes identified by X-ray diffraction, the mass losses evidenced by thermogravimetric analysis, the structural changes determined by infrared and nuclear magnetic resonance spectroscopy, and the pore connectivity analyzed by positron annihilation spectroscopy. The findings show that the multimetallic nature of the LDH governs the size and distribution (geometry, location, and connectivity) of the mesopores developed, which is controlled by the crystallization of the MMO phase, providing key insights for the improved design of porous mixed metal oxides.
ContributorsMurty, Rohan Aditya (Author) / Deng, Shuguang (Thesis director) / Nielsen, David R. (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
As global population and demand for electrical power increase, humanity is faced with the growing challenge of harnessing and distributing enough energy to sustain the developing world. Currently, fossil fuels (coal
atural gas) are our main sources of electricity. However, their cost is increasing, they are nonrenewable, and they are very harmful to the environment. Thus, capacity expansion in the renewable energy sector must be realized to offset higher energy demand and reduce dependence on fossil fuels. Solar energy represents a practical solution, as installed global solar capacity has been increasing exponentially over the past 2 decades. However, even with government incentives, solar energy price ($/kWh) continues to be highly dependent on political climate and raw material (silicon and silver) cost. To realistically and cost effectively meet the projected expansions within the solar industry, silver must be replaced with less costly and more abundant metals (such as copper) in the front-grid metallization process of photovoltaic cells. Copper, while offering both higher achievable efficiencies and a raw material cost nearly 100 times cheaper than silver, has inherent disadvantages. Specifically, copper diffuses rapidly into the silicon substrate, requires more complex and error-prone processing steps, and tends to have less adhesive strength, reducing panel robustness. In this study, nickel deposition via sputtering was analyzed, as well as overall potential of nickel as a seed layer for copper plating, which also provides a barrier layer to copper diffusion in silicon. Thermally-formed nickel silicide also reduces contact resistivity, increasing cell efficiency. It was found that at 400 \u00B0C, ideal nickel silicide formation occurred. By computer modeling, contact resistivity was found to have a significant impact on cell efficiency (up to 1.8%). Finally, sputtering proved useful to analyze nickel silicide formation, but costs and time requirements prevent it from being a practical industrial-scale metallization method.
atural gas) are our main sources of electricity. However, their cost is increasing, they are nonrenewable, and they are very harmful to the environment. Thus, capacity expansion in the renewable energy sector must be realized to offset higher energy demand and reduce dependence on fossil fuels. Solar energy represents a practical solution, as installed global solar capacity has been increasing exponentially over the past 2 decades. However, even with government incentives, solar energy price ($/kWh) continues to be highly dependent on political climate and raw material (silicon and silver) cost. To realistically and cost effectively meet the projected expansions within the solar industry, silver must be replaced with less costly and more abundant metals (such as copper) in the front-grid metallization process of photovoltaic cells. Copper, while offering both higher achievable efficiencies and a raw material cost nearly 100 times cheaper than silver, has inherent disadvantages. Specifically, copper diffuses rapidly into the silicon substrate, requires more complex and error-prone processing steps, and tends to have less adhesive strength, reducing panel robustness. In this study, nickel deposition via sputtering was analyzed, as well as overall potential of nickel as a seed layer for copper plating, which also provides a barrier layer to copper diffusion in silicon. Thermally-formed nickel silicide also reduces contact resistivity, increasing cell efficiency. It was found that at 400 \u00B0C, ideal nickel silicide formation occurred. By computer modeling, contact resistivity was found to have a significant impact on cell efficiency (up to 1.8%). Finally, sputtering proved useful to analyze nickel silicide formation, but costs and time requirements prevent it from being a practical industrial-scale metallization method.
ContributorsBliss, Lyle Brewster (Author) / Bowden, Stuart (Thesis director) / Karas, Joseph (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
Anaerobic digestion (AD), a common process in wastewater treatment plants, is traditionally assessed with Biochemical Methane Potential (BMP) tests. Hydrolysis is considered its rate-limiting step. During my research, I assessed the impact of pretreatment on BMPs and microbial electrochemical cells (MECs). In the first set of experiments, BMP tests were performed using alkaline and thermal pretreated waste activated sludge (WAS), a control group, and a negative control group as samples and AD sludge (ADS) as inoculum. The data obtained suggested that BMPs do not necessarily require ADS, since samples without inoculum produced 5-20% more CH4. However, ADS appears to reduce the initial methanogenesis lag in BMPs, as no pH inhibition and immediate CH4 production were observed. Consumption rate constants, which are related to hydrolysis, were calculated using three methods based on CH4 production, SSCOD concentration, and the sum of both, called the lumped parameter. All the values observed were within literature values, yet each provide a different picture of what is happening in the system. For the second set of experiments, the current production of 3 H-type MECs were compared to the CH4 production of BMPs to assess WAS solids' biodegradability and consumption rates relative to the pretreatment methods employed for their substrate. BMPs fed with pretreated and control WAS solids were performed at 0.42 and 1.42 WAS-to-ADS ratios. An initial CH4 production lag of about 12 days was observed in the BMP assays, but MECs immediately began producing current. When compared in terms of COD, MECs produced more current than the BMPs produced CH4, indicating that the MEC may be capable of consuming different types of substrate and potentially overestimating CH4 production in anaerobic digesters. I also observed 2 to 3 different consumption events in MECs versus 3 for BMP assays, but these had similar magnitudes, durations, and starting times in the control and thermal pretreated WAS-fed assays and not in alkaline assays. This might indicate that MECs identified the differences of alkaline pretreatment, but not between control WAS and thermal pretreated WAS. Furthermore, HPLC results suggest at least one hydrolysis event, as valerate, butyrate, and traces of acetate are observed in the reactors' effluents. Moreover, a possible inhibition of valerate-fixing microbial communities due to pretreatment and the impossibility of valerate consumption by ARB might explain its presence in the reactors' effluents.
ContributorsBrown Munoz, Francisco (Author) / Torres, Cesar (Thesis director) / Rittmann, Bruce E. (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
A scheme has been developed for finding the gas and temperature profiles in an environmental transmission electron microscope (ETEM), using COMSOL Multiphysics and the finite element method (FEM). This model should permit better correlation between catalyst structure and activity, by providing a more accurate understanding of gas composition than the assumption of homogeneity typically used. While more data is needed to complete the model, current progress has identified several details about the system and its ideal modeling approach.
It is found that at the low pressures and flowrates of catalysis in ETEM, natural and forced convection are negligible forms of heat transfer. Up to 250 °C, radiation is also negligible. Gas conduction, being enhanced at low pressures, dominates.
Similarly, mass transport is dominated by diffusion, which is most accurately described by the Maxwell-Stefan model. Bulk fluid flow is highly laminar, and in fact borders the line between continuum and molecular flow. The no-slip boundary condition does not apply here, and both viscous slip and thermal creep must be considered. In the porous catalyst pellet considered in this work, Knudsen diffusion dominates, with bulk flow being best described by the Darcy-Brinkman equation.
With these physics modelled, it appears as though the gas homogeneity assumption is not completely accurate, breaking down in the porous pellet where reactions occur. While these results are not yet quantitative, this trend is likely to remain in future model iterations. It is not yet clear how significant this deviation is, though methods are proposed to minimize it if necessary.
Some model-experiment mismatch has been found which must be further explored. Experimental data shows a pressure dependence on the furnace temperature at constant power, a trend as-yet unresolvable by the model. It is proposed that this relates to the breakdown of the assumption of fluid continuity at low pressures and small dimensions, though no compelling mathematical formulation has been found. This issue may have significant ramifications on ETEM and ETEM experiment design.
It is found that at the low pressures and flowrates of catalysis in ETEM, natural and forced convection are negligible forms of heat transfer. Up to 250 °C, radiation is also negligible. Gas conduction, being enhanced at low pressures, dominates.
Similarly, mass transport is dominated by diffusion, which is most accurately described by the Maxwell-Stefan model. Bulk fluid flow is highly laminar, and in fact borders the line between continuum and molecular flow. The no-slip boundary condition does not apply here, and both viscous slip and thermal creep must be considered. In the porous catalyst pellet considered in this work, Knudsen diffusion dominates, with bulk flow being best described by the Darcy-Brinkman equation.
With these physics modelled, it appears as though the gas homogeneity assumption is not completely accurate, breaking down in the porous pellet where reactions occur. While these results are not yet quantitative, this trend is likely to remain in future model iterations. It is not yet clear how significant this deviation is, though methods are proposed to minimize it if necessary.
Some model-experiment mismatch has been found which must be further explored. Experimental data shows a pressure dependence on the furnace temperature at constant power, a trend as-yet unresolvable by the model. It is proposed that this relates to the breakdown of the assumption of fluid continuity at low pressures and small dimensions, though no compelling mathematical formulation has been found. This issue may have significant ramifications on ETEM and ETEM experiment design.
ContributorsLangdon, Jayse Tanner (Author) / Crozier, Peter (Thesis director) / Hildreth, Owen (Committee member) / Chemical Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
The United States and most of the world is pushing to significantly reduce carbon emissions, with many countries intent on fostering carbon negative energy processes to offset ozone depletion and climate changes. 30% of the U.S. greenhouse gas emissions are generated from the combustion of fossil fuels to generate electricity1. Current commercial IGCC carbon capture processes employ a capital and operating cost intensive water-gas shift reaction facilitated by a high temperature reactor followed by a low temperature reactor and an amine absorber to separate the hydrogen and carbon dioxide streams to capture the carbon. Dr. Jerry Y.S. and his laboratory at Arizona State have developed a hydrogen permselective MFI type ZSM-5 zeolite membrane reactor that effectively facilities the water gas shift reaction with high conversion and separates the CO2 and H2 streams during reaction to generate ultrapure retentate and permeate streams. The membrane, formed by secondary free growth, is synthesized on an ultrapure a-alumina membrane support currently purchased from an outside vendor. The purpose of this study was to design an α-alumina support processing plant with capability to supply one full-scale commercial reactor annually with membranes. The design yielded a DCFRoR of 71% for a 20-year project life. A zeolite membrane processing material balance was conducted using alumina support as the raw material. The study showed very low material costs and consumption rates for all materials except a gas used to refine the membrane after processing. The results of both studies were favorable enough to suggest further study.
ContributorsNorman, Taylor Cristine (Author) / Lin, Jerry Y.S. (Thesis director) / Meng, Lie (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
The current methods of drug delivery prove to have inefficiencies as far as drug administration to the target site. Due to adverse factors that the drug faces within the body, it can be broken down before the therapeutic can be applied. Polymeric micelles have shown promising results in the face of these circumstances, by being able to self-assemble into a core-shell structure to better house the medicine as it travels through blood stream upon intravenous injection. The triblock copolymer, PEG-PPG-PEG, uses it hydrophilic and hydrophobic components to form a spherical micelle at a nanoscale size allowing it cross barriers with greater ease and prolong dissociation. The resulting size of the micelle is measured by the use of a dynamic light scattering machine. Stability factors, such as, thermodynamic and kinetic stability, also aid in the formation of micelles, but are generally effected in drug delivery process by factors such as salt concentration and pH. Both these factors can cause a lack of stability resulting in aggregation of the micelles; therefore, their affects need to be prolonged in order to have sufficient drug delivery.
ContributorsNelson, Adriana Elisabeth (Author) / Green, Matthew (Thesis director) / Nannenga, Brent (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
This study details the construction and operation of a dry-jet wet spinning apparatus for extruding hollow fiber membranes (HFMs). The main components of the apparatus are a spinneret, a coagulation bath, and an automatic collection reel. Continuous fiber formation was achieved using two syringe pumps simultaneously delivering polymer dope and bore fluid to the spinneret. Based on apparatus runs performed with Polysulfone (PSF) dopes dissolved in N,N-Dimethylacetamide and supporting rheological analysis, the entanglement concentration, ce, was identified as a minimum processing threshold for creating HFMs. Similarly, significant increases in the ultimate tensile strength, fracture strain, and Young's modulus for extruded HFMs were observed as polymer dope concentration was increased at levels near ce. Beyond this initial increase, subsequent tests at higher PSF concentrations yielded diminishing changes in mechanical properties, suggesting an asymptotic approach to a point where the trend would cease. Without further research, it is theorized that this point falls on a transition from the semidiute entangled to concentrated concentration regimes. SEM imaging of samples revealed the formation of grooved structures on the inner surface of samples, which was determined to be a result of the low flowrate and polymer dope concentrations used in processing the HFMs during apparatus runs. Based on continued operation of the preliminary apparatus design, many areas of improvement were noted. Namely, these consisted of controlling the collector speed, eliminating rubbing of nascent fibers against the edge of the coagulation bath by installing an elevated roller, and replacing tygon tubing for the polymer line with a luer lock adapter for direct syringe attachment to the spinneret.
ContributorsBridge, Alexander Thomas (Author) / Green, Matthew D. (Thesis director) / Lin, Jerry Y. S. (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
Acute Kidney Injury (AKI) may be detected through biomarkers in urine. This research is being done to develop a membrane for use in separating urine biomarkers to monitor their level. A hydrophobic membrane was treated to improve separation of the desired biomarker for colorimetric sensing. This method was tested with model solutions containing the biomarker. Future work will extend to testing with real urine.
ContributorsBrown, Stephanie Ann (Author) / Lind, Mary Laura (Thesis director) / Yin, Huidan (Committee member) / Materials Science and Engineering Program (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
This research addresses the need for improvement in radiation sensors for applications of ionizing radiation such as radiotherapy. The current sensors involved are polymer gel dosimeters, MOSFETs, radio-chromic films, etc. Most of the sensors involved require expensive equipment's and processing facilities for readout. There is still a need to develop better sensors that can be clinically applied. There are numerous groups around the world trying to conceive a better dosimeter. One of the radiation sensors that was developed recently was based on fluorescence signal emitted from the sensor. To advance the field of radiation sensors, a visual indicator has been developed in-lab as a method of detect ionizing radiation. The intensity of change in color is directly dependent on the amount of incident ionizing radiation. An aqueous gold nanoparticle sensor can be used to accurately determine the incident amount of ionizing radiation1. A gold nanoparticle sensor has been developed in lab with the use of hexadecyltrimethylammonium bromide (C16TAB) as the templating molecule. In the presence of ionizing radiation, the colorless gold salt is reduced and templated, creating a dispersion within the fluid1. The formation of suspended nanoparticles leads to a color change that can be visually detected and accurately analyzed through the employment of a spectrometer. Unfortunately, the toxicity of C16TAB is high. It is expected the toxicity can be reduced by replacing C16TAB with an amino acid, as amino acids can act as templating molecules in the solution and many are naturally occuring2. The experiments included a screening of 20 natural amino acids and 12 unnatural amino acids with the gold salt solution in the presence of ionizing radiation. Stability and absorbance testing was conducted on the amino acid sensors. Additional screening of lead amino acid sensors at various concentrations of irradiation was conducted.
ContributorsGupta, Saumya (Co-author) / Rege, Kaushal (Co-author, Thesis director) / Pushpavanam, Karthik (Co-author, Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
The following paper discusses the potential for Designed Ankyrin Repeat Proteins (DARPin) use as a diagnostic tool for neurodegenerative diseases in particular Alzheimer's disease (AD) and Parkinson's disease (PD). The two structures investigated for AD and PD were ADC7 and PDC1. Plasmid transformation was performed in order to grow the DARPin in E. coli for simple expression. Following growth and purification the proteins were validated using SDS-PAGE, Western Blot, BCA and indirect sandwich ELISA using transgenic mouse brain tissue. Targeted functionality of the DARPin structure was utilized during characterization methods to ensure the efficacy of the protein as a diagnostic for the respective disease targets. Both the ADC7 and PDC1 demonstrated improved binding with transgenic mice compared to wild type with a maximum 1.8 and 1.7 relative ratio, respectively. Additionally, both of the proteins demonstrated exclusive binding to their disease target and did not provide false positive results.
ContributorsTindell, John (Co-author) / Card, Emma (Co-author) / Sierks, Michael (Thesis director) / Nannenga, Brent (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12