




Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We demonstrate its use to determine the first room-temperature structure of RNA polymerase II at high resolution, revealing new structural details. Moreover, the double flow-focusing nozzles were successfully tested with three other protein samples and the first room temperature structure of an extradiol ring-cleaving dioxygenase was solved by utilizing the improved operation and characteristics of these devices.
This paper outlines the design and testing of a z-scan spectrometer capable of measuring the third order refraction index of liquids. The spectrometer underwent multiple redesigns, with each explored in this paper with their benefits and drawbacks discussed. The first design was capable of measuring the third order refraction index for glass, and found a value of 8.43 +- 0.392 x 10^(-16) cm^2/W for the glass sample, with the literature stating glass has a refraction index between 1-100 x 10^(-16) cm^2/W. The second design was capable of measuring the third order refraction index of liquids, and found values of 1.23 $\pm$ 0.121 $\e{-16}$ and 9.43 +- 1.00 x 10^(-17) cm^2/W for water and ethanol respectively, with literature values of 2.7 x 10^(-16) and 5.0 x 10^(-17) cm^2/W respectively. The third design gave inconclusive results due to extreme variability in testing, and and the fourth design outlined has not been tested yet due to time constraints.
This research endeavor explores the 1964 reasoning of Irish physicist John Bell and how it pertains to the provoking Einstein-Podolsky-Rosen Paradox. It is necessary to establish the machinations of formalisms ranging from conservation laws to quantum mechanical principles. The notion that locality is unable to be reconciled with the quantum paradigm is upheld through analysis and the subsequent Aspect experiments in the years 1980-1982. No matter the complexity, any local hidden variable theory is incompatible with the formulation of standard quantum mechanics. A number of strikingly ambiguous and abstract concepts are addressed in this pursuit to deduce quantum's validity, including separability and reality. `Elements of reality' characteristic of unique spaces are defined using basis terminology and logic from EPR. The discussion draws directly from Bell's succinct 1964 Physics 1 paper as well as numerous other useful sources. The fundamental principle and insight gleaned is that quantum physics is indeed nonlocal; the door into its metaphysical and philosophical implications has long since been opened. Yet the nexus of information pertaining to Bell's inequality and EPR logic does nothing but assert the impeccable success of quantum physics' ability to describe nature.
Previous studies about the effects of regulatory institutions on the outcomes of regulation have resulted in a lack of consensus on the nature of these impacts. This paper seeks to resolve some of this ambiguity by analyzing two dimension of electric utility regulatory outcomes, prices and reliability, with a broader panel of explanatory variables and with a Hausman-Taylor regression technique. The results suggest that elected regulators and deregulated electricity markets result in worse reliability outcomes for consumers without strong evidence that either institution secures lower electricity prices. Incorporating these insights into a theoretical model of regulation could give more detailed insight into how to create regulatory institutions that can optimize the outcomes of governance.
With the rise of fast fashion and its now apparent effects on climate change, there is an evident need for change in terms of how we as individuals use our clothing and footwear. Our team has created Ray Fashion Inc., a sustainable footwear company that focuses on implementing the circular economy to reduce the amount of waste generated in shoe creation. We have designed a sandal that accommodates the rapid consumption element of fast fashion with a business model that promotes sustainability through a buy-back method to upcycle and retain our materials.
As America undergoes a modern, civil rights movement, the reality of police brutality can no longer be disregarded by everyday voters. The Black Lives Matter movement has become ubiquitous, both in real life and in the media, after the murder of George Floyd. This moment has made way for widespread video coverage of police brutality incidents, a litany of written think pieces dissecting the long-term effectiveness of the police, and a myriad of articles discussing prospective policy actions. With a rise in coverage comes a heightened level of awareness of and conversation around this issue. We have witnessed the pervasiveness of the Black Lives Matter movement and an increasing conversation around the allocation of funding towards police departments. Change has been sparked, but which form of media has most effectively influenced the public? Seeing as one of the principal goals of police-related advocacy groups is to fulfill their vision of a properly functioning police force, including in relation to accountability and reform, it is vital to understand which medium the public is most receptive to. This study and its design serve to examine how exposure to different media regarding police brutality affects people’s opinions on Black Lives Matter, police reform policies, and similar changes. Moving forward, social movements will have a better understanding of which types of media can best target the public when trying to coalesce support around their movement.