Matching Items (188)
Description

Studying the so-called ”hidden” phases of quantum materials—phases that do not exist under equilibrium conditions, but can be accessed with light—reveals new insights into the broader field of structural phase transitions. Using terahertz irradiation as well as hard x-ray probes made available by x-ray free electron lasers (XFELs) provides unique

Studying the so-called ”hidden” phases of quantum materials—phases that do not exist under equilibrium conditions, but can be accessed with light—reveals new insights into the broader field of structural phase transitions. Using terahertz irradiation as well as hard x-ray probes made available by x-ray free electron lasers (XFELs) provides unique capabilities to study phonon dispersion in these materials. Here, we study the cubic peak of the quantum paraelectric strontium titanate (SrTiO3, STO) below the 110 K cubic-to-tetragonal tran- sition. Our results reveal a temperature and field strength dependence of the transverse acoustic mode in agreement with previous work on the avoided crossing occurring at finite wavevector, as well as evidence of anharmonic coupling between transverse optical phonons and a fully symmetric A1g phonon. These results elucidate previous optical studies on STO and hold promise for future studies on the hidden metastable phases of quantum materials.

ContributorsStanton, Jade (Author) / Teitelbaum, Samuel (Thesis director) / Smith, David (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2023-05
Description

The self-assembly of strongly-coupled nanocrystal superlattices, as a convenient bottom-up synthesis technique featuring a wide parameter space, is at the forefront of next-generation material design. To realize the full potential of such tunable, functional materials, a more complete understanding of the self-assembly process and the artificial crystals it produces is

The self-assembly of strongly-coupled nanocrystal superlattices, as a convenient bottom-up synthesis technique featuring a wide parameter space, is at the forefront of next-generation material design. To realize the full potential of such tunable, functional materials, a more complete understanding of the self-assembly process and the artificial crystals it produces is required. In this work, we discuss the results of a hard coherent X-ray scattering experiment at the Linac Coherent Light Source, observing superlattices long after their initial nucleation. The resulting scattering intensity correlation functions have dispersion suggestive of a disordered crystalline structure and indicate the occurrence of rapid, strain-relieving events therein. We also present real space reconstructions of individual superlattices obtained via coherent diffractive imaging. Through this analysis we thus obtain high-resolution structural and dynamical information of self-assembled superlattices in their native liquid environment.

ContributorsHurley, Matthew (Author) / Teitelbaum, Samuel (Thesis director) / Ginsberg, Naomi (Committee member) / Kirian, Richard (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor)
Created2023-05
Description

Advances in photoinjector technology have given rise to applications such as XFELs, UED, and UEM. Brighter electron beams from the source increase pulse energies and photon lasing energies for XFELs, as well as an increase in coherence lengths at femtosecond timescales on the Ultrafast Electron technologies. Deeper investigations of the

Advances in photoinjector technology have given rise to applications such as XFELs, UED, and UEM. Brighter electron beams from the source increase pulse energies and photon lasing energies for XFELs, as well as an increase in coherence lengths at femtosecond timescales on the Ultrafast Electron technologies. Deeper investigations of the photoemission process have placed stringent requirements on electron sources for next generation electron accelerator technology, and certain novel photocathode sources have been identified as candidates to satisfy these required specifications. At Arizona State University, a cryogenically cooled 200 kV DC electron gun and accompanying photocathode diagnostics beamline was developed and conditioned specifically to implement these novel photocathodes and provide diagnostics for their performance.

ContributorsSarabia Cardenas, Carlos (Author) / Karkare, Siddharth (Thesis director) / Gevorkyan, Gevork (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor)
Created2023-05
Description

In nuclear physics, there is a discrepancy between theory and experiment concerning the number of existing nucleon resonances. Current models predict far more states than have been observed. In particular, few searches have found excited nucleon resonances with energies above 2.2 GeV in the K Lambda channel. To investigate high-mass

In nuclear physics, there is a discrepancy between theory and experiment concerning the number of existing nucleon resonances. Current models predict far more states than have been observed. In particular, few searches have found excited nucleon resonances with energies above 2.2 GeV in the K Lambda channel. To investigate high-mass nucleon resonances, efficiency-corrected yields of the reaction ep --> e K+ Lambda(1520) --> e K+ K- p in the center-of-mass energy range 2.1-4.5 GeV are constructed utilizing Jefferson Lab's CLAS12 detector. This paper presents the results of an analysis searching for high-mass nucleon resonances in the K Lambda channel between 2.1-4.5 GeV.

ContributorsOsar, Rebecca (Author) / Dugger, Michael (Thesis director) / Ritchie, Barry (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor) / School of International Letters and Cultures (Contributor)
Created2023-05
Description
The flute is a unique instrument for a multitude of reasons. Culturally, the flute has existed for centuries and spanned continents. Musically, it is unlike other woodwind instruments in that it requires no reed to produce sound. Physically, the acoustical properties of the flute follow that of an open organ

The flute is a unique instrument for a multitude of reasons. Culturally, the flute has existed for centuries and spanned continents. Musically, it is unlike other woodwind instruments in that it requires no reed to produce sound. Physically, the acoustical properties of the flute follow that of an open organ pipe and there are numerous variables that can affect the flute's sound. By gaining a fundamental understanding of the history of the flute, the physics of music, and how a flute produces sound, we can begin to look at these variables, such as material, bore, and size, and understand the physics behind the flute and piccolo. This knowledge can then be applied to our own analysis of flute and piccolo playing to examine if these conclusions hold true.
ContributorsConnolly, Grace (Author) / Foy, Joseph (Thesis director) / Hannon, Mikaela (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor) / School of Social Transformation (Contributor)
Created2024-05
Description
The secular rights surrounding dead bodies are conditional and possess unfortunate shortcomings. The existence of ghosts as representatives of the supernatural seem to make up for those shortcomings and provide a firmer foundation for rights. Thus I explore the existence of supernatural rights of the dead as present in a

The secular rights surrounding dead bodies are conditional and possess unfortunate shortcomings. The existence of ghosts as representatives of the supernatural seem to make up for those shortcomings and provide a firmer foundation for rights. Thus I explore the existence of supernatural rights of the dead as present in a wide basis of belief systems. From this I examine the connection between the supernatural rights and the current discussions on secular rights of the dead, finding the supernatural rights acting as an impetus for the secular.
ContributorsMathez, Raymond (Author) / Soares, Rebecca (Thesis director) / Ostling, Michael (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2024-05
Description
We describe the fabrication and characterization of magnesium diboride (MgB2) thin films for applications in superconducting devices. MgB2 shows great potential as a superconducting thin-film material due to its high transition temperature (Tc ≅ 39 K) and its level of nonlinear kinetic inductance that could enable a large current-controlled phase

We describe the fabrication and characterization of magnesium diboride (MgB2) thin films for applications in superconducting devices. MgB2 shows great potential as a superconducting thin-film material due to its high transition temperature (Tc ≅ 39 K) and its level of nonlinear kinetic inductance that could enable a large current-controlled phase shift for accessibility to higher frequencies (0.5 – 3 THz). Compared to other high-temperature superconductors like YBa2Cu3O7 (YBCO), FeSe, and BaFe2As2 that require complex deposition techniques and have intricate crystal structures, MgB2 stands out due to its simple synthesis process and suitability for thin-film fabrication. We measure Coplanar Waveguide (CPW) and inverted microstrip MgB2 resonators that yield an internal quality factor of up to 15,000 at 4.2 K. By DC-biasing 3-μm wide CPW and inverted microstrip transmission lines, we demonstrate current-tunable phase-delays between 0 and 2π radians, showcasing the nonlinear kinetic inductance in MgB2. Understanding the total loss and nonlinear kinetic inductance of MgB2 allows for the design and realization of THz frequency superconducting devices, which are crucial for astrophysics and quantum sensors. MgB2 thin films find applications in Hot Electron Bolometers (HEBs), Thermal Kinetic Inductance Detectors (TKIDs), THz Traveling Wave Parametric Amplifiers (TWPAs), and THz frequency multipliers.
ContributorsBell, Christina (Author) / Mauskopf, Philip (Thesis director) / Chamberlin, Ralph (Committee member) / Cunnane, Daniel (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor)
Created2024-05
Description
As the number of mental health cases presenting in American EDs increases, psychiatric patients end up spending hours and sometimes days in the ED awaiting transfer to psychiatric treatment facilities. In Maricopa County, Arizona’s largest county by population, data from the healthcare delivery sector is used to assess the

As the number of mental health cases presenting in American EDs increases, psychiatric patients end up spending hours and sometimes days in the ED awaiting transfer to psychiatric treatment facilities. In Maricopa County, Arizona’s largest county by population, data from the healthcare delivery sector is used to assess the status, needs, and gaps of the wider crisis mental health system.
ContributorsJensen, Spencer (Author) / Wilson, Natalia (Thesis director) / Cortese, Denis (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / Department of Physics (Contributor)
Created2024-05
Description
It has been recently claimed that there is a local enhancement of neutrino-antineutrino asymmetry in the Cosmic Neutrino Background (CNB) near the surface of the Earth of order $10^{-4}$ due to the in-matter potential experienced by relic neutrinos. This asymmetry is significantly larger than the expected $10^{-9}$ from the baryon

It has been recently claimed that there is a local enhancement of neutrino-antineutrino asymmetry in the Cosmic Neutrino Background (CNB) near the surface of the Earth of order $10^{-4}$ due to the in-matter potential experienced by relic neutrinos. This asymmetry is significantly larger than the expected $10^{-9}$ from the baryon asymmetry and is a promising step towards detecting the CNB. However, this claim makes many simplifying assumptions to reach this outcome, the most significant of which is the geometry used to model the Earth. Here, we approach the problem with a more realistic geometry for the Earth, and we find that the neutrino-antineutrino asymmetry near Earth is $10^{-8}$, which agrees with other recently reported results from other authors}.
ContributorsLoeffler, Joshua (Author) / Terrano, William (Thesis director) / Lunardini, Cecilia (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2024-05
Description

Most asteroids originated in larger parent bodies that underwent accretion and heating during the first few million years of the solar system. We investigated the parent body of S-type asteroid 25143 Itokawa by developing a computational model which can approximate the thermal evolution of an early solar system body. We

Most asteroids originated in larger parent bodies that underwent accretion and heating during the first few million years of the solar system. We investigated the parent body of S-type asteroid 25143 Itokawa by developing a computational model which can approximate the thermal evolution of an early solar system body. We compared known constraints on Itokawa’s thermal history to simulations of its parent body and constrained its time of formation to between 1.6 and 2.5 million years after the beginning of the solar system, though certain details could allow for even earlier or later formation. These results stress the importance of precise data required of the material properties of asteroids and meteorites to place better constraints on the histories of their parent bodies. Additional mathematical and computational details are discussed, and the full code and data is made available online.

ContributorsHallstrom, Jonas (Author) / Bose, Maitrayee (Thesis director) / Beckstein, Oliver (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor) / Materials Science and Engineering Program (Contributor)
Created2023-05