Matching Items (43)
Description
It is well known that deficiencies in key chemical elements (such as phosphorus, P) can reduce animal growth; however, recent empirical data have shown that high levels of dietary nutrients can also reduce animal growth. In ecological stoichiometry, this phenomenon is known as the "stoichiometric knife edge," but its underlying

It is well known that deficiencies in key chemical elements (such as phosphorus, P) can reduce animal growth; however, recent empirical data have shown that high levels of dietary nutrients can also reduce animal growth. In ecological stoichiometry, this phenomenon is known as the "stoichiometric knife edge," but its underlying mechanisms are not well-known. Previous work has suggested that the crustacean zooplankter Daphnia reduces its feeding rates on phosphorus-rich food, causing low growth due to insufficient C (energy) intake. To test for this mechanism, feeding rates of Daphnia magna on algae (Scenedesmus acutus) differing in C:P ratio (P content) were determined. Overall, there was a significant difference among all treatments for feeding rate (p < 0.05) with generally higher feeding rates on P-rich algae. These data indicate that both high and low food C:P ratio do affect Daphnia feeding rate but are in contradiction with previous work that showed that P-rich food led to strong reductions in feeding rate. Additional experiments are needed to gain further insights.
ContributorsSchimpp, Sarah Ann (Author) / Elser, James (Thesis director) / Neuer, Susanne (Committee member) / Peace, Angela (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Sustainability (Contributor)
Created2014-05
130314-Thumbnail Image.png
Description
Large quantities of sodic and alkaline bauxite residue are produced globally as a by-product from alumina refineries. Ecological stoichiometry of key elements [nitrogen (N) and phosphorus (P)] plays a critical role in establishing vegetation cover in bauxite residue sand (BRS). Here we examined how changes in soil chemical properties over

Large quantities of sodic and alkaline bauxite residue are produced globally as a by-product from alumina refineries. Ecological stoichiometry of key elements [nitrogen (N) and phosphorus (P)] plays a critical role in establishing vegetation cover in bauxite residue sand (BRS). Here we examined how changes in soil chemical properties over time in rehabilitated sodic and alkaline BRS affected leaf N to P stoichiometry of native species used for rehabilitation. Both Ca and soil pH influenced the shifts in leaf N:P ratios of the study species as supported by consistently significant positive relationships (P < 0.001) between these soil indices and leaf N:P ratios. Shifts from N to P limitation were evident for N-fixing species, while N limitation was consistently experienced by non-N-fixing plant species. In older rehabilitated BRS embankments, soil and plant indices (Ca, Na, pH, EC, ESP and leaf N:P ratios) tended to align with those of the natural ecosystem, suggesting improved rehabilitation performance. These findings highlight that leaf N:P stoichiometry can effectively provide a meaningful assessment on understanding nutrient limitation and productivity of native species used for vegetating highly sodic and alkaline BRS, and is a crucial indicator for assessing ecological rehabilitation performance.
ContributorsGoloran, Johnvie B. (Author) / Chen, Chengrong (Author) / Phillips, Ian R. (Author) / Elser, James (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2015-10-07
Description
Ephemeral and intermittent streams are valuable sources of surface water support in the arid ecosystems of the Southwestern United States. These streams account for over 80% of the streams in the American Southwest and their importance has been indicated in many studies. Ephemeral and intermittent streams support a wide range

Ephemeral and intermittent streams are valuable sources of surface water support in the arid ecosystems of the Southwestern United States. These streams account for over 80% of the streams in the American Southwest and their importance has been indicated in many studies. Ephemeral and intermittent streams support a wide range of plant and animal species in both continuous and episodic fashions. This study aimed to gain a better understanding of the relationship between streamflow permanence and patterns of biomass and secondary production of the riparian fauna these ecosystems support. This was accomplished through a yearlong survey in the Huachuca Mountains of Southeastern, Arizona where macroinvertebrates were collected at various sites along a gradient of streamflow permanence before, during, and after the three month monsoon season that supplies most of the annual rainfall in this region. The results of my surveys indicate that 1) Sites characterized by low streamflow permanence were more responsive to changes in precipitation than sites characterized by relatively high streamflow permanence 2) In ephemeral streams, there is a significant peak in terrestrial macroinvertebrate production and biomass both during and after the monsoon season 3) streamflow permanence may convey consistent but not exceptional secondary production whereas seasonality in rainfall may convey exceptional but episodic secondary production—more so in sites where streamflow is not consistent.
ContributorsMcCartin, Michael Patrick (Author) / Sabo, John (Thesis director) / Stromberg, Juliet (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
Description
Many studies have shown that as the calcium carbonate precipitates, it sequesters phosphate. Although the geochemical interactions between phosphate and calcium carbonate are known, only a few studies have considered calcium carbonate deposition's effect on stream ecology. Further, those studies considering decomposition have produced conflicting results. In this study, nutrient-diffusing

Many studies have shown that as the calcium carbonate precipitates, it sequesters phosphate. Although the geochemical interactions between phosphate and calcium carbonate are known, only a few studies have considered calcium carbonate deposition's effect on stream ecology. Further, those studies considering decomposition have produced conflicting results. In this study, nutrient-diffusing cups with organic substrata were used to determine the nutrient limitation of decomposers in the travertine streams in the Huachuca Mountains. After processing a subset of the experiments, only one site (in Huachuca Canyon) from the four study streams was significantly nutrient-limited (NP co-limitation).
ContributorsNevarez, Nicole Michelle (Author) / Elser, James (Thesis director) / Sabo, John (Committee member) / Corman, Jessica (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-05
Description
Aquatic macroinvertebrates can be key contributors to nitrogen (N) and phosphorus (P) cycling in streams. Though they exhibit intense control via trophic interactions and nutrient conversion, they may be influenced by other environmental factors that can determine total excretion-derived N, P, and N:P. Garden Canyon and Ramsey Canyon, two streams

Aquatic macroinvertebrates can be key contributors to nitrogen (N) and phosphorus (P) cycling in streams. Though they exhibit intense control via trophic interactions and nutrient conversion, they may be influenced by other environmental factors that can determine total excretion-derived N, P, and N:P. Garden Canyon and Ramsey Canyon, two streams in the Huachuca Mountain Range in Southern Arizona, USA, host similar insect communities, but only Garden Canyon experiences a seasonal P limitation due to the co-precipitation of phosphate with calcium carbonate (CaCO3) in its benthic substrate (Corman et al. 2015). I performed an analysis of excretion rates of aquatic insects living in these streams to test if the P limitation is reflected in rates that insects recycle nutrients. A lower mean N:P of all insect excretion rates in Garden provides evidence for an ecosystem-scale effect, though the differences in N:P of excretion rates by individual taxa between streams did not support the hypothesis. Attributing excretion rates to actual insect densities in three years reveals that natural-occurring fluctuations in excretion rates can operate on the same magnitude as fluctuations in abundances and causes steep differences in nutrient conversion between streams. Lastly, I found that since these streams support immense insect diversity, they receive excretion-derived N and P from taxa in many different functional feeding groups, which illustrates ecosystem resilience and uniqueness.
ContributorsSanders, Ashley Marie (Author) / Sabo, John (Thesis director) / Cease, Arianne (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
Land management practices such as domestic animal grazing can alter plant communities via changes in soil structure and chemistry, species composition, and plant nutrient content. These changes can affect the abundance and quality of plants consumed by insect herbivores with consequent changes in population dynamics. These population changes can translate

Land management practices such as domestic animal grazing can alter plant communities via changes in soil structure and chemistry, species composition, and plant nutrient content. These changes can affect the abundance and quality of plants consumed by insect herbivores with consequent changes in population dynamics. These population changes can translate to massive crop damage and pest control costs. My dissertation focused on Oedaleus asiaticus, a dominant Asian locust, and had three main objectives. First, I identified morphological, physiological, and behavioral characteristics of the migratory ("brown") and non-migratory ("green") phenotypes. I found that brown morphs had longer wings, larger thoraxes and higher metabolic rates compared to green morphs, suggesting that developmental plasticity allows greater migratory capacity in the brown morph of this locust. Second, I tested the hypothesis of a causal link between livestock overgrazing and an increase in migratory swarms of O. asiaticus. Current paradigms generally assume that increased plant nitrogen (N) should enhance herbivore performance by relieving protein-limitation, increasing herbivorous insect populations. I showed, in contrast to this scenario, that host plant N-enrichment and high protein artificial diets decreased the size and viability of O. asiaticus. Plant N content was lowest and locust abundance highest in heavily livestock-grazed fields where soils were N-depleted, likely due to enhanced erosion and leaching. These results suggest that heavy livestock grazing promotes outbreaks of this locust by reducing plant protein content. Third, I tested for the influence of dietary imbalance, in conjunction with high population density, on migratory plasticity. While high population density has clearly been shown to induce the migratory morph in several locusts, the effect of diet has been unclear. I found that locusts reared at high population density and fed unfertilized plants (i.e. high quality plants for O. asiaticus) had the greatest migratory capacity, and maintained a high percent of brown locusts. These results did not support the hypothesis that poor-quality resources increased expression of migratory phenotypes. This highlights a need to develop new theoretical frameworks for predicting how environmental factors will regulate migratory plasticity in locusts and perhaps other insects.
ContributorsCease, Arianne (Author) / Harrison, Jon (Thesis advisor) / Elser, James (Thesis advisor) / DeNardo, Dale (Committee member) / Quinlan, Michael (Committee member) / Sabo, John (Committee member) / Arizona State University (Publisher)
Created2012
Description
The southwestern willow flycatcher (Empidonax traillii extimus) is listed as an endangered species throughout its range in the southwestern United States. Little is known about its sub-population spatial structure and how this impacts its population viability. In conjunction with being listed as endangered, a recovery plan was produced by the

The southwestern willow flycatcher (Empidonax traillii extimus) is listed as an endangered species throughout its range in the southwestern United States. Little is known about its sub-population spatial structure and how this impacts its population viability. In conjunction with being listed as endangered, a recovery plan was produced by the US Fish and Wildlife Service, with recovery units (sub-populations) roughly based on major river drainages. In the interest of examining this configuration of sub-populations and their impact on the measured population viability, I applied a multivariate auto-regressive state-space model to a spatially extensive time series of abundance data for the southwestern willow flycatcher over the period spanning 1995-2010 estimating critical growth parameters, correlation in environmental stochasticity or "synchronicity" between sub-populations (recovery units) and extinction risk of the sub-populations and the whole. The model estimates two parameters, the mean and variance of annual growth rate. Of the models I tested, I found the strongest support for a population model in which three of the recovery units were grouped (the Lower Colorado, Gila Basin, and Rio Grande recovery units) while keeping all others separate. This configuration has 6.6 times more support for the observed data than a configuration assigning each recovery unit to a separate sub-population, which is how they are circumscribed in the recovery plan. Given the best model, the mean growth rate is -0.0234 (CI95 -0.0939, 0.0412) with a variance of 0.0597 (CI95 0.0115, 0.1134). This growth rate is not significantly different from zero and this is reflected in the low potential for quasi-extinction. The cumulative probability of the population experiencing at least an 80% decline from current levels within 15 years for some sub-populations were much higher (range: 0.129-0.396 for an 80% decline). These results suggest that the rangewide population has a low risk of extinction in the next 15 years and that the formal recovery units specified by the original recovery plan do not correspond to proper sub-population units as defined by population synchrony.
ContributorsDockens, Patrick E. T. (Author) / Sabo, John (Thesis advisor) / Stromberg, Juliet (Committee member) / Fenichel, Eli (Committee member) / Arizona State University (Publisher)
Created2012
Description

An understanding of the formation of spatial heterogeneity is important because spatial heterogeneity leads to functional consequences at the ecosystem scale; however, such an understanding is still limited. Particularly, research simultaneously considering both external variables and internal feedbacks (self-organization) is rare, partly because these two drivers are addressed under different

An understanding of the formation of spatial heterogeneity is important because spatial heterogeneity leads to functional consequences at the ecosystem scale; however, such an understanding is still limited. Particularly, research simultaneously considering both external variables and internal feedbacks (self-organization) is rare, partly because these two drivers are addressed under different methodological frameworks. In this dissertation, I show the prevalence of internal feedbacks and their interaction with heterogeneity in the preexisting template to form spatial pattern. I use a variety of techniques to account for both the top-down template effect and bottom-up self-organization. Spatial patterns of nutrients in stream surface water are influenced by the self-organized patch configuration originating from the internal feedbacks between nutrient concentration, biological patchiness, and the geomorphic template. Clumps of in-stream macrophyte are shaped by the spatial gradient of water permanence and local self-organization. Additionally, significant biological interactions among plant species also influence macrophyte distribution. The relative contributions of these drivers change in time, responding to the larger external environments or internal processes of ecosystem development. Hydrologic regime alters the effect of geomorphic template and self-organization on in-stream macrophyte distribution. The relative importance of niche vs. neutral processes in shaping biodiversity pattern is a function of hydrology: neutral processes are more important in either very high or very low discharge periods. For the spatial pattern of nutrients, as the ecosystem moves toward late succession and nitrogen becomes more limiting, the effect of self-organization intensifies. Changes in relative importance of different drivers directly affect ecosystem macroscopic properties, such as ecosystem resilience. Stronger internal feedbacks in average to wetter years are shown to increase ecosystem resistance to elevated external stress, and make the backward shifts (vegetation loss) much more gradual. But it causes increases in ecosystem hysteresis effect. Finally, I address the question whether functional consequences of spatial heterogeneity feed back to influence the processes from which spatial heterogeneity emerged through a conceptual review. Such feedbacks are not likely. Self-organized spatial patterning is a result of regular biological processes of organisms. Individual organisms do not benefit from such order. It is order for free, and for nothing.

ContributorsDong, Xiaolin (Author) / Grimm, Nancy (Thesis advisor) / Muneepeerakul, Rachata (Thesis advisor) / Franklin, Janet (Committee member) / Heffernan, James B (Committee member) / Sabo, John (Committee member) / Arizona State University (Publisher)
Created2015
Description
In desert riparian ecosystems, rivers provide free water but access to that water diminishes with distance producing a steep gradient in the relative importance of water for growth and reproduction of riparian animals and hence, their biodiversity. Previous work suggests that water limited riparian predators eat more prey to meet

In desert riparian ecosystems, rivers provide free water but access to that water diminishes with distance producing a steep gradient in the relative importance of water for growth and reproduction of riparian animals and hence, their biodiversity. Previous work suggests that water limited riparian predators eat more prey to meet their water demand where free water is not available. Here I explore the effect of water limitation on prey selection and per capita interaction strengths between a predatory spider ( Hogna antelucana) and two prey species occupying different trophic levels using a controlled field experiment conducted in the riparian forest of the San Pedro River, Cochise County, AZ. Lab measurements of water and energy content revealed that intermediate predators (smaller spiders in the genus Pardosa) had 100-fold higher energy: water ratios than an alternate prey species more basal in the food web (crickets in the genus Gryllus). Given this observation, I hypothesized that water-stressed predatory wolf spiders would select more water-laden crickets but switch to more energy rich Pardosa when water stress was experimentally eliminated. Additionally, I hypothesized that switching by quenched Hogna to Pardosa would reduce predation by Pardosa on Gryllus leading to increased abundance of the basal resource. Finally, I hypothesized that water mediated switching and release of basal prey would be stronger when male Hogna was the apex predator, because female Hogna have higher energetic costs of reproduction and hence, stronger energy limitation. Experimental water additions caused both sexes of Hogna to consume significantly higher numbers of Pardosa but this difference (between water and no-water treatments) did not vary significantly between male and female Hogna treatments. Similarly, strong negative interaction strengths between Hogna and Pardosa led to release of the basal prey species and positive interaction strengths of Hogna on Gryllus. Again strong positive, indirect effects of Hogna on Gryllus did not depend on the sex of the Hogna predator. However, water mediated indirect effects of Hogna (either sex) on Gryllus were the strongest for male Gryllus. These results suggest that water and energy co-dominate foraging decisions by predators and that in managing water-energy balance; predators can modify interaction pathways, sex-ratios of prey populations and trophic dynamics.
ContributorsLeinbach, Israel (Author) / Sabo, John (Thesis advisor) / Harrison, Jon (Committee member) / Johnson, Chadwick (Committee member) / Arizona State University (Publisher)
Created2015
Description
Many studies over the past two decades examined the link between climate patterns and discharge, but few have attempted to study the effects of the El Niño Southern Oscillation (ENSO) on localized and watershed specific processes such as nutrient loading in the Southwestern United States. The Multivariate ENSO Index (MEI)

Many studies over the past two decades examined the link between climate patterns and discharge, but few have attempted to study the effects of the El Niño Southern Oscillation (ENSO) on localized and watershed specific processes such as nutrient loading in the Southwestern United States. The Multivariate ENSO Index (MEI) is used to describe the state of the ENSO, with positive (negative) values referring to an El Niño condition (La Niña condition). This study examined the connection between the MEI and precipitation, discharge, and total nitrogen (TN) and total phosphorus (TP) concentrations in the Upper Salt River Watershed in Arizona. Unrestricted regression models (UMs) and restricted regression models (RMs) were used to investigate the relationship between the discharges in Tonto Creek and the Salt River as functions of the magnitude of the MEI, precipitation, and season (winter/summer). The results suggest that in addition to precipitation, the MEI/season relationship is an important factor for predicting discharge. Additionally, high discharge events were associated with high magnitude ENSO events, both El Niño and La Niña. An UM including discharge and season, and a RM (restricting the seasonal factor to zero), were applied to TN and TP concentrations in the Salt River. Discharge and seasonality were significant factors describing the variability in TN in the Salt River while discharge alone was the significant factor describing TP. TN and TP in Roosevelt Lake were evaluated as functions of both discharge and MEI. Some significant correlations were found but internal nutrient cycling as well as seasonal stratification of the water column of the lake likely masks the true relationships. Based on these results, the MEI is a useful predictor of discharge, as well as nutrient loading in the Salt River Watershed through the Salt River and Tonto Creek. A predictive model investigating the effect of ENSO on nutrient loading through discharge can illustrate the effects of large scale climate patterns on smaller systems.
ContributorsSversvold, Darren (Author) / Neuer, Susanne (Thesis advisor) / Elser, James (Committee member) / Fenichel, Eli (Committee member) / Arizona State University (Publisher)
Created2012