Matching Items (51)
130314-Thumbnail Image.png
Description
Large quantities of sodic and alkaline bauxite residue are produced globally as a by-product from alumina refineries. Ecological stoichiometry of key elements [nitrogen (N) and phosphorus (P)] plays a critical role in establishing vegetation cover in bauxite residue sand (BRS). Here we examined how changes in soil chemical properties over

Large quantities of sodic and alkaline bauxite residue are produced globally as a by-product from alumina refineries. Ecological stoichiometry of key elements [nitrogen (N) and phosphorus (P)] plays a critical role in establishing vegetation cover in bauxite residue sand (BRS). Here we examined how changes in soil chemical properties over time in rehabilitated sodic and alkaline BRS affected leaf N to P stoichiometry of native species used for rehabilitation. Both Ca and soil pH influenced the shifts in leaf N:P ratios of the study species as supported by consistently significant positive relationships (P < 0.001) between these soil indices and leaf N:P ratios. Shifts from N to P limitation were evident for N-fixing species, while N limitation was consistently experienced by non-N-fixing plant species. In older rehabilitated BRS embankments, soil and plant indices (Ca, Na, pH, EC, ESP and leaf N:P ratios) tended to align with those of the natural ecosystem, suggesting improved rehabilitation performance. These findings highlight that leaf N:P stoichiometry can effectively provide a meaningful assessment on understanding nutrient limitation and productivity of native species used for vegetating highly sodic and alkaline BRS, and is a crucial indicator for assessing ecological rehabilitation performance.
ContributorsGoloran, Johnvie B. (Author) / Chen, Chengrong (Author) / Phillips, Ian R. (Author) / Elser, James (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2015-10-07
Description

Anaerobic Digestion (AD) typically stabilizes 40-60% of influent wastewater sludge. Improving the methane yield in wastewater may produce enough energy to power some wastewater treatment processes, while the production of volatile-fatty acids (VFAs) generates economic incentives for yard waste pre-fermentation. In this research, pre-fermenters consisting of inocula composed of media;

Anaerobic Digestion (AD) typically stabilizes 40-60% of influent wastewater sludge. Improving the methane yield in wastewater may produce enough energy to power some wastewater treatment processes, while the production of volatile-fatty acids (VFAs) generates economic incentives for yard waste pre-fermentation. In this research, pre-fermenters consisting of inocula composed of media; cellulose, lantana, or grass; and rabbit cecotrope were fed various concentrations of plant matter. The contents of these pre-fermenters were the influent for respective anaerobic digesters. The microbial consortium derived for the lignocellulosic pretreatment with common yard waste in Arizona successfully increased methane production in AD, while producing additional VFAs during pretreatment in all systems. The performance of the system appeared to depend on plant matter loading and operating time, with a higher plant loading increasing the VFA production and a longer operating time increasing soluble chemical oxygen demand (COD) in pre-fermentation, and therefore the methane production in AD increased. The pre-fermenter with the highest plant matter loading and longest operating time –1.44 g plant matter per day at a 9.6% influent concentration and 193 days of total operating time– produced 10,000 mg COD/L of VFA, and its reactor produced about 460 mL methane (CH4) per day, which was almost twice the production of the control AD at 250 mL CH4 per day. This research uses yard waste that would previously be disposed of in landfill to increase valuable product production in AD. The potential value added to wastewater treatment plant (WWTP) processes by these methods could incentivize the expansion of wastewater treatment, thereby increasing sanitation access. The use of net-neutral biogas as a fuel source for WWTPs is additionally an incremental solution for reducing carbon equivalents present in the atmosphere, thereby reducing the greenhouse gas effect.

ContributorsPittman, Smith (Author) / Rittmann, Bruce (Thesis director) / Young, Michelle (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Sustainable Engineering & Built Envirnmt (Contributor)
Created2022-05
Description

Methane (CH4) is a prominent greenhouse gas that contributes to the negative impacts of global warming and climate change, whose emissions have more than doubled since the Industrial Revolution primarily due to anthropogenic sources. The main pathways in which methane moves through the environment are methanogenesis and methanotrophy. Methane is

Methane (CH4) is a prominent greenhouse gas that contributes to the negative impacts of global warming and climate change, whose emissions have more than doubled since the Industrial Revolution primarily due to anthropogenic sources. The main pathways in which methane moves through the environment are methanogenesis and methanotrophy. Methane is primarily generated by acetoclastic methanogenesis in wetlands while it can be oxidized both aerobically and anaerobically. Wetlands are important methane emission sources at 177 - 284 Tg CH4 year-1. The Tres Rios Wetland (TRW) is a constructed facility to complete nutrient removal of treated municipal wastewater, and has shown low emissions of methane. Whether such low emissions could be achieved through active anaerobic oxidation of methane (AOM) is not known, and the main objective of this work is to evaluate the rates of AOM in TRW. In this study an isotopic method and a mass balance method were utilized to determine the rate of AOM from top sediments found at Tres Rios at various locations and in two sets of sampling. The results showed that evidence of AOM occurred in the sediments of both sampling events conducted. The first sampling set showed evidence of AOM at all locations along a transect, showing that oxidation of methane is indeed occurring in Tres Rios sediments. Evidence from both methodologies suggested that high methanogenesis rates occurred at the outside location closest to the water. The second sampling set showed that the highest rate of AOM occurred at the outlet location, with the lowest rate occurring in the middle location. DNA extractions and PCR images resulted in a poor DNA yield, and inability to extract DNA. It was determined that the isotopic approach was less accurate than the mass balance approach due to unexpected delta CH4 values. It was determined that dilutions of CH4 ppm lead to less accurate isotopic measurements needed to estimate AOM rates using a 13C pulse technique. Literature review suggests that factors including water presence, temperature, redox potential, and plant presence can be influential in the oxidation of methane. This AOM assay can be beneficial in better understanding how methane cycles at Tres Rios, and can provide opportunities for future research in determining which factors influence the oxidation of methane in different locations throughout wetlands.

ContributorsBlum, Natalie (Author) / Cadillo-Quiroz, Hinsby (Thesis director) / Rittmann, Bruce (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainable Engineering & Built Envirnmt (Contributor) / School of Mathematical and Natural Sciences (Contributor)
Created2023-05
Description

In order for microalgae to be a cost-effective renewable energy source, a high CO2-transfer efficiency (CTE) is necessary. Using hollow-fiber membranes (HFM), membrane carbonation (MC) in microalgal cultivation can be used to achieve a CTE near 100%. Due to the diurnal cycle in outdoor algal cultivation, an inconsistent CO2 demand

In order for microalgae to be a cost-effective renewable energy source, a high CO2-transfer efficiency (CTE) is necessary. Using hollow-fiber membranes (HFM), membrane carbonation (MC) in microalgal cultivation can be used to achieve a CTE near 100%. Due to the diurnal cycle in outdoor algal cultivation, an inconsistent CO2 demand with temperature fluctuations can cause pore wetting of the inner and outer fiber layers in composite HFMs. In addition, the presence of supersaturated O2 during high algal growth may change the gas transfer dynamics of the fibers, which can be critical when trying to selectively remove CO2 from a valuable gas such as biogas. This study evaluated fiber performance under conditions that mimic these effects by analyzing the carbon transfer efficiency (CTE), CO2 flux (JCO2), and outlet CO2 concentration compared to baseline values. Wetting of the interior fiber macropores resulted in an average 32% ± 8.3% decrease in flux, which was greater than for flooding of the outer macropores, which showed no significant change. All tests resulted in a decrease in CTE and an increase in outlet CO2. The presence of elevated O2 levels did not decrease the CO2 flux compared to baseline values, but it increased the O2 concentration and decreased the CH4 concentration at the distal end of the fibers. These findings highlight that liquid accumulation can decrease HFM performance during MC for microalgal cultivation, while the presence of supersaturated O2 can reduce separation efficiency.

ContributorsFrias, Zoe (Author) / Rittmann, Bruce (Thesis director) / Eustance, Everett (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor)
Created2021-12
Description

Cyanobacteria and microalgae help reduce the environmental impact of human energy consumption by playing a vital role in carbon and nitrogen cycling. They are also used in various applications like biofuel production, food, medicine, and bioremediation. Understanding how these organisms respond to stress is important for efficient recovery strategies and

Cyanobacteria and microalgae help reduce the environmental impact of human energy consumption by playing a vital role in carbon and nitrogen cycling. They are also used in various applications like biofuel production, food, medicine, and bioremediation. Understanding how these organisms respond to stress is important for efficient recovery strategies and sustainable outcomes. This study investigated the effects of low-level bleaching and thermal stress on cyanobacteria and microalgae, specifically Synechocystis, Chlorella, and Scenedesmus. The role of ferroptosis, an iron-dependent form of cell death, in the degradation of cellular components under these stressors was examined. Flow cytometry and spectrophotometry were used to measure changes in cellular health and viability. The results showed that temperature influences the type of cell death mechanism and can impact photosynthetic organisms. When treated with Liproxstatin-1, an inhibitor of ferroptosis, both Synechocystis and Chlorella experienced a decrease in oxidative damage, suggesting a potential protective role for the compound. Further investigation into ferroptosis and other forms of cell death, as well as identifying additional inhibitory molecules, could lead to strategies for mitigating oxidative stress and enhancing the resilience of cyanobacteria and microalgae.

ContributorsRayes, Rammy (Author) / Rittmann, Bruce (Thesis director) / Eustance, Everett (Committee member) / Lewis, Christine (Committee member) / Khdour, Omar (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2023-05
Description
Nitrate (NO3- ) and selenate (SeO42-) are common contaminants found in mining wastewater. Biological treatment has proved successful using bacteria capable of respiring NO3- into nitrogen gas and SeO42- into Se°. The Membrane Biofilm Reactor (MBfR) utilizes biofilm communities on the surface of hollow-fiber membranes to transform oxidized water

Nitrate (NO3- ) and selenate (SeO42-) are common contaminants found in mining wastewater. Biological treatment has proved successful using bacteria capable of respiring NO3- into nitrogen gas and SeO42- into Se°. The Membrane Biofilm Reactor (MBfR) utilizes biofilm communities on the surface of hollow-fiber membranes to transform oxidized water contaminants into innocuous reduced products. For this project, I set up two MBfRs in a lead and lag configuration to reduce NO3- [input at ~40-45 mg NO3-N/L] and SeO42- [0.62 mg/L], while avoiding sulfate (SO42-) [~1600-1660 mg/L] reduction. Over the course of three experimental phases, I controlled two operating conditions: the applied hydrogen pressure and the total electron acceptor loading. NO3- in the lead MBfR showed average reductions of 50%, 94%, and 91% for phases I, II, and III, respectively. In the lag MBfR, NO3- was reduced by 40%, 96%, and 100% for phases I, II, and III. NO2- was formed in Stage I when NO3- was not reduced completely; nevertheless NO2- accumulation was absent for the remainder of operation. In the lead MBfR, SeO42- was reduced by 65%, 87%, and 50% for phases I, II, and III. In the lag MBfR, SeO42- was reduced 60%, 27%, and 23% for phases I, II, and III. SO42- was not reduced in either MBfR. Biofilm communities were composed of denitrifying bacteria Rhodocyclales and Burkholderiales, Dechloromonas along with the well-known SeO42--reducing Thauera were abundant genera in the biofilm communities. Although SO42- reduction was suppressed, sulfate-reducing bacteria were present in the biofilm. To optimize competition for electron donor and space in the biofilm, optimal operational conditions were hydrogen pressures of 26 and 7 psig and total electron acceptor loading of 3.8 and 3.4 g H2/m2 day for the lead and lag MBfR, respectively.
ContributorsMehta, Sanya Vipul (Author) / Rittmann, Bruce (Thesis director) / Ontiveros-Valencia, Aura (Committee member) / Chemical Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
With global warming becoming a more serious problem and mankind's alarming dependency on fossil fuels, the need for a sustainable and environmentally friendly fuel source is becoming more important. Biofuels produced from photosynthetic microorganisms like algae or cyanobacteria offer a carbon neutral replacement for petroleum fuel sources; however, with the

With global warming becoming a more serious problem and mankind's alarming dependency on fossil fuels, the need for a sustainable and environmentally friendly fuel source is becoming more important. Biofuels produced from photosynthetic microorganisms like algae or cyanobacteria offer a carbon neutral replacement for petroleum fuel sources; however, with the technology and information available today, the amount of biomass that would need to be produced is not economically feasible. In this work, I examined a possible factor impacting the growth of a model cyanobacterium, Synechocystis sp. PCC6803, which is heterotrophic bacteria communities accompanying the cyanobacteria. I experimented with three variables: the type of heterotrophic bacteria strain, the initial concentration of heterotrophic bacteria, and the addition of a carbon source (glucose) to the culture. With experimental information, I identified if given conditions would increase Synechocystis growth and thus increase the yield of biomass. I found that under non-limiting growth conditions, heterotrophic bacteria do not significantly affect the growth of Synechocystis or the corresponding biomass yield. The initial concentration of heterotrophic bacteria and the added glucose also did not affect the growth of Synechocystis. I did see some nutrient recycling from the heterotrophic bacteria as the phosphate levels in the growth medium were depleted, which was apparent from prolonged growth phase and higher levels of reactive phosphate in the media.
ContributorsCahill, Brendan Robert (Author) / Rittmann, Bruce (Thesis director) / Krajmalnik-Brown, Rosa (Committee member) / W. P. Carey School of Business (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
Description
The need for clean fuel sources is greater than ever, as fossil fuel dependence has soared and harmful emissions are being released into the atmosphere at increasingly higher rates. A viable solution to this issue is the use of microalgae for the creation of biofuels, as it holds a high

The need for clean fuel sources is greater than ever, as fossil fuel dependence has soared and harmful emissions are being released into the atmosphere at increasingly higher rates. A viable solution to this issue is the use of microalgae for the creation of biofuels, as it holds a high concentration of lipids without requiring arable land for growth. This experiment studies downstream applications of microalgae, including how the extraction efficiency can be improved for greater lipid yield. 3-dimethyldodecylammonium propanesulfonate, myristyltrimethylammonium bromide and sodium dodecyl sulfate were used as surfactants to break down the algae cell walls and improve lipid recovery. The incubation times of the biomass in the surfactant were also studied at 0, 4.5, 24, 48 and 72 hours to more fully examine how surfactants affect the extraction of lipids. Along with this, hexane and isopropanol were used as the main extraction solvent in this experiment, but testing was done to compare these lipid yields to when ethyl acetate was used as the solvent. It was found that the MTMAB surfactant led to the greatest cell disruption, as its lipid yields were consistently higher than those of the other surfactants. Also, longer incubation times did improve the amount of lipid extracted, showing that the surfactants do have a strong effect on the cell breakdown. Finally, it was found that the ethyl acetate was a slightly more effective solvent than hexane and isopropanol in the conditions of this experiment. Overall, a stronger understanding of the wet extraction process was gained from these tests, as well as more insight into how some of the variables interact and work together during extraction.
ContributorsMartarella, Rebecca Lynne (Author) / Rittmann, Bruce (Thesis director) / Lai, Sean Yen-Jung (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
Description
N-nitrosodimethylamine (NDMA) is a probable human carcinogen and drinking water disinfection by-product. NDMA forms as the product of reactions between chloramines and precursor compounds in water. This dissertation aims to provide insight into the removal of NDMA precursors, their nature, and a method to aid in their identification. Watershed-derived precursors

N-nitrosodimethylamine (NDMA) is a probable human carcinogen and drinking water disinfection by-product. NDMA forms as the product of reactions between chloramines and precursor compounds in water. This dissertation aims to provide insight into the removal of NDMA precursors, their nature, and a method to aid in their identification. Watershed-derived precursors accounted for more of and greater variability to NDMA formation upon chloramination than polymer-derived precursors in environmental samples. Coagulation polymers are quaternary amines, which have low NDMA yield but high use rates. Watershed-derived precursors were removed up to 90% by sorption to activated carbon, but activated carbon exhibited much less (<10%) sorption of polymer-derived precursors. Combined with literature NDMA molar yields of model anthropogenic compounds, where anthropogenic chemicals in some cases have NDMA yields >90% and biological compounds always have yields <2%, trace, organic, amine containing, anthropogenic chemicals were implicated as the most likely source of NDMA precursors in the watershed. Although activated carbon removes these precursors well, identification of individual compounds may result in more cost effective mitigation strategies. Therefore, I developed a method to isolate NDMA precursors from other organic matter into methanol to facilitate their identification. Optimization of the method resulted in a median recovery of NDMA precursors of 82% from 10 surface waters and one wastewater. The method produces 1,000X concentrated NDMA precursors and, in collaboration with the University of Colorado Center for Environmental Mass Spectrometry, time of flight mass spectrometry (TOF-MS) was performed on multiple treated wastewater and raw drinking water isolates. During TOF-MS, tertiary amines can cleave to form a neutral loss and an R group ion that is dependent on the original structure and I wrote a software program to “trawl” exported TOF-MS spectra for the diagnostic neutral loss resulting from fragmentation of tertiary amines. Methadone was identified as one new NDMA precursor that occurs at concentrations that form physiologically relevant levels of NDMA in surface water and wastewater. The approach used here to identify NDMA precursors is adaptable to other unknown disinfection by-product precursors given that a functional group is known that can 1)control sorption and 2)produce a predictable diagnostic fragment.
ContributorsHanigan, David (Author) / Westerhoff, Paul (Thesis advisor) / Rittmann, Bruce (Committee member) / Herckes, Pierre (Committee member) / Arizona State University (Publisher)
Created2015
Description
The production and applications of engineered nanomaterials (ENM) has increased rapidly in the last decade, with release of ENM to the environment through the sewer system and municipal wastewater treatment plants (WWTPs) being of concern. Currently, the literature on ENM release from WWTPs and removal of ENM by WWTPs is

The production and applications of engineered nanomaterials (ENM) has increased rapidly in the last decade, with release of ENM to the environment through the sewer system and municipal wastewater treatment plants (WWTPs) being of concern. Currently, the literature on ENM release from WWTPs and removal of ENM by WWTPs is insufficient and disorganized. There is little quantitative data on the removal of multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO), or few-layer graphene (FLG), from wastewater onto biomass. The removal of pristine and oxidized MWCNTs (O-MWCNTs), graphene oxide (GO), few-layer graphene (FLG) and Tween™ 20-coated Ag ENM by the interaction with biomass were determined by programmable thermal analysis (PTA) and UV-Vis spectrophotometry. The removal of pristine and O-MWCNTs was 96% from the water phase via aggregation and 30-min settling in presence or absence of biomass with an initial MWCNT concentration of 25 mg/L. The removal of 25 mg/L GO was 65% with biomass concentration at or above 1,000 mg TSS/L. The removal of 1 mg/L FLG was 16% with 50 mg TSS/L. The removal of Tween™ 20 Ag ENM with concentration from 0.97 mg/L to 2.6 mg/L was from 11% to 92% with biomass concentration of 500 mg TSS/L to 3,000 mg TSS/L, respectively.

A database of ENM removal by biomass was established by analyzing data from published papers, and non-linear solid-liquid distribution functions were built into the database. A conventional activated sludge (CAS) model was built based on a membrane bioreactor (MBR) model from a previous paper. An iterative numeric approach was adapted to the CAS model to calculate the result of non-linear adsorption of ENM by biomass in the CAS process. Kinetic studies of the CAS model showed the model performance changed mostly in the first 10 days after changing influent chemical oxygen demand (COD) concentration, and reached a steady state after 11 days. Over 60% of ENMs which have distribution coefficients in the database reached higher than 50% removal by the CAS model under general operational conditions. This result suggests that traditional WWTP which include the CAS process can remove many known types of ENMs in certain degree.
ContributorsYu, Zhicheng (Author) / Westerhoff, Paul (Thesis advisor) / Rittmann, Bruce (Committee member) / Herckes, Pierre (Committee member) / Arizona State University (Publisher)
Created2015