Matching Items (144)
Description

Mathematical and analytical approach at the floor and diffuser of a Formula 1 vehicle and how they produce downforce. Reaches a conclusion about how engineers and aerodynamicists creates the desired effects underneath the vehicle to produce substantial downforce.

ContributorsMarcantonio, Nicholas Joseph (Author) / Rajadas, John (Thesis director) / Hillery, Scott (Committee member) / College of Integrative Sciences and Arts (Contributor) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The researchers build a drone with a grasping mechanism to wrap around branches to perch. The design process and methodology are discussed along with the software and hardware configuration. The researchers explain the influences on the design and the possibilities for what it could inspire.

ContributorsDowney, Matthew Evan (Co-author) / Macias, Jose (Co-author) / Goldenberg, Edward (Co-author) / Zhang, Wenlong (Thesis director) / Aukes, Daniel (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The NCAA is changing the current rules and regulations around a student-athlete’s name, image, and likeness. Previously, student-athletes were not allowed to participate in business activities or noninstitutional promotional activities. With the new rule changes, student-athletes will be able to engage in business activities related to their own name, image,

The NCAA is changing the current rules and regulations around a student-athlete’s name, image, and likeness. Previously, student-athletes were not allowed to participate in business activities or noninstitutional promotional activities. With the new rule changes, student-athletes will be able to engage in business activities related to their own name, image, and likeness. The goal of the team was to help “prepare athletes to understand and properly navigate the evolving restrictions and guidelines around athlete name, image, and likeness”. In order to accomplish this, the team had to understand the problems student-athletes face with these changing rules and regulations. The team conducted basic market research to identify the problem. The problem discovered was the lack of communication between student-athletes and businesses. In order to verify this problem, the team conducted several interviews with Arizona State University Athletic Department personnel. From the interviews, the team identified that the user is the student-athletes and the buyer is the brands and businesses. Once the problem was verified and the user and buyer were identified, a solution that would best fit the customers was formulated. The solution is a platform that assists student-athletes navigate the changing rules of the NCAA by providing access to a marketplace optimized to working with student-athletes and offering an ease of maintaining relationships between student-athletes and businesses. The solution was validated through meetings with interested brands. The team used the business model and market potential to pitch the business idea to the brands. Finally, the team gained traction by initiating company partnerships.

ContributorsRecato, Bella Sebastian (Co-author) / Schulte, Brooke (Co-author) / Winston, Blake (Co-author) / Byrne, Jared (Thesis director) / Lee, Christopher (Committee member) / Kunowski, Jeffrey (Committee member) / Engineering Programs (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The intent of this project was to design, build, and test a female-intended vibrator that incorporates elements of haptic feedback, biomimicry, and/or micro robotics. Device development was based on human-centered user design elements and the study of physiological arousal, as sexuality and sexual functioning are a part of a human’s

The intent of this project was to design, build, and test a female-intended vibrator that incorporates elements of haptic feedback, biomimicry, and/or micro robotics. Device development was based on human-centered user design elements and the study of physiological arousal, as sexuality and sexual functioning are a part of a human’s overall assessment of health and well-being. The thesis sought to fill the gap that prevents data collection of a female entire sexual response from initial arousal to final orgasm.

ContributorsDirks, Jessica (Author) / Ralston, Laurie (Thesis director) / McDaniel, Troy (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor) / Human Systems Engineering (Contributor)
Created2022-05
Description

The current Solid-State Electrolyte (SSE) used in Li-ion batteries are limited by their current production methods (i.e., die-pressing; tape casting), planar geometries and random porosities. This constrains their use for mass production in manufacturing plants. 3D-printing of SSEs, however, is a new, highly-researched method that shows promise in expanding beyond

The current Solid-State Electrolyte (SSE) used in Li-ion batteries are limited by their current production methods (i.e., die-pressing; tape casting), planar geometries and random porosities. This constrains their use for mass production in manufacturing plants. 3D-printing of SSEs, however, is a new, highly-researched method that shows promise in expanding beyond the laboratory to more large-scale industrial production as rapid prototyping takes place. Indeed, laboratory studies to date suggest that SSE technology is safer than current production methods and provides a safe high energy solid-state battery. For SSE technology to become a reality though, it must be scalable and financially feasible. Therefore, this thesis aids to bridge the gap between laboratory studies and commercialization by examining the financial feasibility of adopting this technology for a hypothetical battery manufacturing plant. In doing this, I develop a model of the incremental net cash flows, and subsequently the Net Present Value (NPV), from such an enterprise. If the present value of future cash flows from the enterprise are anticipated to be greater than the investment costs, the NPV is positive and the investment in this new technology would be considered instantaneously value enhancing and thus financially feasible. However, future cash flows are highly uncertain, which brings into question financial feasibility in a risky environment. To address the riskiness of future cash flows, I model three risk factors: the cost of raw materials, the potential growth in battery sales, as well as the potential mark-up (profit margin) of the SSE enterprise. Using Monte Carlo simulation (MCS) I model the incremental cash flows considering these risk factors and derive probabilistic assessments of NPV. My analysis suggests that despite the uncertainty caused by the volatility of raw metal prices, assumptions on price mark-up, and uncertain market demand for Li-ion batteries, there is a high probability of an investment in SSE batteries being financially feasible. Future research should consider the value of real options (optionality embedded in tangible investments) as traditional NPV analysis may underestimate the potential value of an investment in the presence of uncertain cash flows, especially if management has the ability to respond to the uncertainty.

ContributorsFonseca, Nathan (Author) / Manfredo, Mark (Thesis director) / Kannan, Arunachala Mada (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2022-05
Description
Manufacturing production is limited by three main factors, cost, both overall and on a per unit basis, final product quality, and process repeatability or frequency. Even producing small objects through the casting of epoxy resin, a liquid substance capable of hardening when in contact with a catalyst material presents these

Manufacturing production is limited by three main factors, cost, both overall and on a per unit basis, final product quality, and process repeatability or frequency. Even producing small objects through the casting of epoxy resin, a liquid substance capable of hardening when in contact with a catalyst material presents these same issues. There are three distinct areas of epoxy resin casting influenced by each of these manufacturing factors, the material used to create molds, the air process applied to minimize defects, and resin demold time. This investigation was designed to determine the impact the three factors of manufacturing production have on the casting epoxy resin. Each category had numerous tests conducted to determine the best combination of production in terms of low cost, high quality, and high levels of repeatability. Ultimately, the best combination was the use of a platinum silicone called Mold Star 15, a pressure chamber, and an epoxy resin with a 12-hour cure time, called Amazing Resin. The final cost to create 100 products is $410.85. However, it should be noted for the highest quality dice, the utilization of a pressure chamber is required while the mold materials are interchangeable.
ContributorsFoster, Whitney (Author) / Delp, Deana (Thesis director) / Rajadas, John (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2022-05
Description

This thesis is broken into two parts: the research and the toolkit. The research portion examines the benefits posed by the Barrett Student Engagement team to the Barrett Polytechnic community. Literature on student retention and attrition, inside and outside of an honors curriculum, was reviewed to better understand likely factors

This thesis is broken into two parts: the research and the toolkit. The research portion examines the benefits posed by the Barrett Student Engagement team to the Barrett Polytechnic community. Literature on student retention and attrition, inside and outside of an honors curriculum, was reviewed to better understand likely factors contributing to an increase of attrition rates. The primary question in focus is: “What are the benefits student engagement poses for Barrett Poly students?” followed by the secondary question of: “How can the student engagement team best support Barrett Poly students?” Data from the past five semesters has been collected and analyzed to determine the general trends and the strengths and weaknesses within each of the six engagement pillars. As the position of Student Engagement Assistant requires a fair amount of training for short-term employment (can be held until graduation from ASU), it is beneficial to have a training manual in place for workers to reference. The project has been made available in a hybrid format to best accommodate future changes in procedures and resources. A summary of the additional materials has been included at the end of this report.

ContributorsGriffin, Kiley (Author) / O'Flaherty, Katherine (Thesis director) / Albin, Joshua (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2022-05
Description
The aim of this project is to create a trifold pamphlet that can raise awareness of female Attention-Deficit Hyperactivity/Impulsivity Disorder (ADHD). ADHD is a neurodevelopmental disorder that has three types: inattentive type, hyperactive type, and combined type. Female individuals with ADHD can present their symptoms slightly differently than males with

The aim of this project is to create a trifold pamphlet that can raise awareness of female Attention-Deficit Hyperactivity/Impulsivity Disorder (ADHD). ADHD is a neurodevelopmental disorder that has three types: inattentive type, hyperactive type, and combined type. Female individuals with ADHD can present their symptoms slightly differently than males with ADHD. Additionally females with ADHD are typically underdiagnosed and therefore go untreated for their ADHD. Females with ADHD show more emotional problems and comorbid internalizing disorders than males with ADHD show.
ContributorsEisenberg, Deborah (Author) / Meloy, Elizabeth (Thesis director) / Ocampo-Hoogasian, Rachel (Committee member) / Barrett, The Honors College (Contributor) / College of Integrative Sciences and Arts (Contributor) / Engineering Programs (Contributor)
Created2022-05
Description

In nature, some animals have an exoskeleton that provides protection, strength, and stability to the organism, but in engineering, an exoskeleton refers to a device that augments or aids human ability. Since the 1890s, engineers have been designing exoskeletal devices, and conducting research into the possible uses of such devices.

In nature, some animals have an exoskeleton that provides protection, strength, and stability to the organism, but in engineering, an exoskeleton refers to a device that augments or aids human ability. Since the 1890s, engineers have been designing exoskeletal devices, and conducting research into the possible uses of such devices. These bio-inspired mechanisms do not necessarily relate to a robotic device, though since the 1900s, robotic principles have been applied to the design of exoskeletons making their development a subfield in robotic research. There are different multiple types of exoskeletons that target different areas of the human body, and the targeted area depends on the need of the device. Usually, the devices are developed for medical or military usage; for this project, the focus is on medical development of an automated elbow joint to assist in rehabilitation. This project is being developed for therapeutic purposes in conjunction between Arizona State University and Mayo Clinic. Because of the nature of this project, I am responsible for the development of a lightweight brace that could be applied to the elbow joint that was designed by Dr. Kevin Hollander. In this project, my research centered on the use of the Wilmer orthosis brace design, and its possible application to the exoskeleton elbow being developed for Mayo Clinic. This brace is a lightweight solution that provides extra comfort to the user.

ContributorsCarlton, Bryan (Author) / Sugar, Thomas (Thesis director) / Aukes, Daniel (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2022-05
Description

Toy hacks modify commercially available toys to be more easily used by people with motor disabilities, and donate them to schools, families, or toy libraries. Switch-adapting a toy adds an audio jack to allow an assistive technology (AT) switch to be plugged in. Switch-adapted toys help children develop essential skills

Toy hacks modify commercially available toys to be more easily used by people with motor disabilities, and donate them to schools, families, or toy libraries. Switch-adapting a toy adds an audio jack to allow an assistive technology (AT) switch to be plugged in. Switch-adapted toys help children develop essential skills through play. Hacking toys is helpful because toys that come with AT switches are often significantly more expensive than their unadapted counterparts. Toy hacks are also an opportunity to teach and practice engineering skills such as soldering and technical problem solving. Many resources are available online to assist makers with hosting toy hacks, but most of them lack information on holding the event. To fill this gap, the authors created a toy hack guide website, drawing from experience hosting two toy hacks. It walks users through steps like choosing the size of the event, the materials that need to be purchased, and connects them to other existing resources. In the future, it will be used to help people host more successful toy hacks.

ContributorsBushroe, Isabella (Author) / Koehl, Bridget (Co-author) / Frank, Daniel (Thesis director) / Brunhaver, Samantha (Committee member) / Martin, Thomas (Committee member) / Barrett, The Honors College (Contributor) / School of Art (Contributor) / Engineering Programs (Contributor)
Created2022-05