Filtering by
- Resource Type: Text

In recent years, concerns have grown over the risks posed by climate change on the U.S. electricity grid. The availability of water resources is integral to the production of electric power, and droughts are expected to become more frequent, severe, and longer-lasting over the course of the twenty-first century. The American Southwest, in particular, is expected to experience large deficits in streamflow. Studies on the Colorado River anticipate streamflow declines of 20-45% by 2050. Other climactic shifts—such as higher water and air temperatures—may also adversely affect power generation. As extreme weather becomes more common, better methods are needed to assess the impact of climate change on power generation. This study uses a physically-based modeling system to assess the vulnerability of power infrastructure in the Southwestern United States at a policy-relevant scale.
Thermoelectric power—which satisfies a majority of U.S. electricity demand—is vulnerable to drought. Thermoelectric power represents the backbone of the U.S. power sector, accounting for roughly 91% of generation. Thermoelectric power also accounts for roughly 39% of all water withdrawals in the U.S.—roughly equivalent to the amount of water used for agriculture. Water use in power plants is primarily dictated by the needs of the cooling system. During the power generation process, thermoelectric power plants build up waste heat, which must be discharged in order for the generation process to continue. Traditionally, water is used for this purpose, because it is safe, plentiful, and can absorb a large amount of heat. However, when water availability is constrained, power generation may also be adversely affected. Thermoelectric power plants are particularly susceptible to changes in streamflow and water temperature. These vulnerabilities are exacerbated by environmental regulations, which govern both the amount of water withdrawn, and the temperatures of the water discharged. In 2003, extreme drought and heat impaired the generating capacity of more than 30 European nuclear power plants, which were unable to comply with environmental regulations governing discharge temperatures. Similarly, many large base-load thermoelectric facilities in the Southeastern United States were threatened by a prolonged drought in 2007 and 2008. During this period, the Tennessee Valley Authority (TVA) reduced generation at several facilities, and one major facility was shut down entirely. To meet demand, the TVA was forced to purchase electricity from the grid, causing electricity prices to rise.
Although thermoelectric power plants currently produce most of the electric power consumed in the United States, other sources of power are also vulnerable to changes in climate. Renewables are largely dependent on natural resources like rain, wind, and sunlight. As the quantity and distribution of these resources begins to change, renewable generation is also likely to be affected. Hydroelectric dams represent the largest source of renewable energy currently in use throughout the United States. Under drought conditions, when streamflow attenuates and reservoir levels drop, hydroelectric plants are unable to operate at normal capacity. In 2001, severe drought in California and the Pacific Northwest restricted hydroelectric power generation, causing a steep increase in electricity prices. Although blackouts and brownouts were largely avoided, the Northwest Power and Conservation Council estimated a regional economic impact of roughly $2.5 to $6 billion. In addition to hydroelectric power, it has also been theorized that solar energy resources may also be susceptible to predicted increases in surface temperature and atmospheric albedo. One study predicts that solar facilities in the Southwestern U.S. may suffer losses of 2-5%.
The aim of this study is to estimate the extent to which climate change may impact power generation in the Southwestern United States. This analysis will focus on the Western Interconnection, which comprises the states of Washington, Oregon, California, Idaho, Nevada, Utah, Arizona, Colorado, Wyoming, Montana, South Dakota, New Mexico and Texas. First, climactic and hydrologic parameters relevant to power generation are identified for five types of generation technologies. A series of functional relationships are developed such that impacts to power generation can be estimated directly from changes in certain meteorological and hydrological parameters. Next, climate forcings from the CMIP3 multi-model ensemble are used as inputs to a physically-based modeling system (consisting of a hydrological model, an offline routing model, and a one-dimensional stream temperature model). The modeling system is used to estimate changes in climactic and hydrologic parameters relevant to electricity generation for various generation technologies. Climactic and hydrologic parameters are then combined with the functional relationships developed in the first step to estimate impacts to power generation over the twenty-first century.

Results are available here.
The environmental life cycle assessment of electric rail public transit modes requires an assessment of electricity generation mixes. The provision of electricity to a region does not usually adhere to geopolitical boundaries. Electricity is governed based on lowest cost marginal dispatch and reliability principles. Additionally, there are times when a public transit agency may purchase wholesale electricity from a particular service provider. Such is the case with electric rail modes in the San Francisco Bay Area.
An environmental life cycle assessment of San Francisco Bay Area public transit systems was developed by Chester and Horvath (2009) and includes vehicle manufacturing/maintenance, infrastructure construction/operation/maintenance, energy production, and supply chains, in addition to vehicle propulsion. For electric rail modes, vehicle propulsion was based on an average electricity mix for the region. Since 2009, new electricity contract information and renewable electricity goals have been established. As such, updated life cycle results should be produced.
Using recent wholesale electricity mix and renewable electricity goal data from the transit agencies, updated electricity precombustion, generation, transmission, and distribution environmental impacts of vehicle propulsion are estimated. In summary, SFMTA Muni light rail is currently purchasing 100% hydro electricity from the Hetch Hetchy region of California and the Bay Area Rapid Transit (BART) system is purchasing 22% natural gas, 9% coal, 2% nuclear, 66% hydro, and 1% other renewables from the Pacific Northwest . Furthermore, the BART system has set a goal of 20% renewables by 2016. Using the GREET1 2012 electricity pathway, a life cycle assessment of wholesale and renewable electricity generation for these systems is calculated.
Chester and Horvath (2009)

The US-Canadian electricity grid is a network of providers and users that operate almost completely independently of one another. In August of 2003, First Energy’s (FE) Harding-Chamberlain transmission line near Akron, Ohio went offline starting a series of cascading failures that eventually led to 8 US states and 1 Canadian province totaling nearly 50 million people without power. The failure of transmission lines are common occurrences relating to the inability to exactly predict the electricity demand at any time (as will be discussed later in this document). The inability to properly monitor and react across multiple organizations to the downed line was the true failure that led to the blackout. This outage not only left homes and businesses without power but paralyzed critical public services such as transportation networks and hospitals. The estimated cost of the outage is between 4 and 6 billion US dollars.

Already the leading cause of weather-related deaths in the United States, extreme heat events (EHEs) are expected to occur with greater frequency, duration and intensity over the next century. However, not all populations are affected equally. Risk factors for heat mortality—including age, race, income level, and infrastructure characteristics—often vary by geospatial location. While traditional epidemiological studies sometimes account for social risk factors, they rarely account for intra-urban variability in meteorological characteristics, or for the interaction between social and meteorological risks.
This study aims to develop estimates of EHEs at an intra-urban scale for two major metropolitan areas in the Southwest: Maricopa County (Arizona) and Los Angeles County (California). EHEs are identified at a 1/8-degree (12 km) spatial resolution using an algorithm that detects prolonged periods of abnormally high temperatures. Downscaled temperature projections from three general circulation models (GCMs) are analyzed under three relative concentration pathway (RCP) scenarios. Over the next century, EHEs are found to increase by 340-1800% in Maricopa County, and by 150-840% in Los Angeles County. Frequency of future EHEs is primarily driven by greenhouse gas concentrations, with the greatest number of EHEs occurring under the RCP 8.5 scenario. Intra-urban variation in EHEs is also found to be significant. Within Maricopa County, “high risk” regions exhibit 4.5 times the number of EHE days compared to “low risk” regions; within Los Angeles County, this ratio is 15 to 1.
The project website can be accessed here.

Researchers at ASU have identified opportunities to reduce risk to human health and the environment by changing the composition and disposal practices of polymers. Although plastics have benefited society in innumerable ways, the resulting omnipresence of plastics in society has led to concerns about the hazards of constant, low-level exposure and the search for options for sustainable disposal.
The team used examples from public health and medicine-sectors that have particularly benefited from polymer applications, to highlight the benefits of using plastics in certain applications and to pinpoint opportunities for reducing risks from all plastics’ uses. These include phasing out polymers that contain components associated with negative health effects, diminishing the need to dispose of large quantities of plastic through reduction and reuse, and promoting and developing less harmful alternatives to conventional plastics.
For additional discussion please see the publication Plastics and Environmental Health: the Road Ahead available online here.

Recent climatic trends show more flooding and extreme heat events and in the future transportation infrastructure may be susceptible to more frequent and intense environmental perturbations. Our transportation systems have largely been designed to withstand historical weather events, for example, floods that occur at an intensity that is experienced once every 100 years, and there is evidence that these events are expected become more frequent. There are increasing efforts to better understand the impacts of climate change on transportation infrastructure. An abundance of new research is emerging to study various aspects of climate change on transportation systems. Much of this research is focused on roadway networks and reliable automobile travel. We explore how flooding and extreme heat might impact passenger rail systems in the Northeast and Southwest U.S.

As average temperatures and occurrences of extreme heat events increase in the Southwest, the water infrastructure that was designed to operate under historical temperature ranges may become increasingly vulnerable to component and operational failures. For each major component along the life cycle of water in an urban water infrastructural system, potential failure events and their semi-quantitative probabilities of occurrence were estimated from interview responses of water industry professionals. These failure events were used to populate event trees to determine the potential pathways to cascading failures in the system. The probabilities of the cascading failure scenarios under future conditions were then calculated and compared to the probabilities of scenarios under current conditions to assess the increased vulnerability of the system. We find that extreme heat events can increase the vulnerability of water systems significantly and that there are ways for water infrastructure managers to proactively mitigate these vulnerabilities before problems occur.

Recent developments in computational software and public accessibility of gridded climatological data have enabled researchers to study Urban Heat Island (UHI) effects more systematically and at a higher spatial resolution. Previous studies have analyzed UHI and identified significant contributors at the regional level for cities, within the topology of urban canyons, and for different construction materials.
In UHIs, air is heated by the convective energy transfer from land surface materials and anthropogenic activities. Convection is dependent upon the temperature of the surface, temperature of the air, wind speed, and relative humidity. At the same time, air temperature is also influenced by greenhouse gases (GHG) in the atmosphere. Climatologists project a 1-5°C increase in near-surface air temperature over the next several decades, and 1-4°C specifically for Los Angeles and Maricopa during summertime due to GHG effects. With higher ambient air temperatures, we seek to understand how convection will change in cities and to what ends.
In this paper we develop a spatially explicit methodology for quantifying UHI by estimating the daily convection thermal energy transfer from land to air using publicly-available gridded climatological data, and we estimate how much additional energy will be retained due to lack of convective cooling in scenarios of higher ambient air temperature.

The leading source of weather-related deaths in the United States is heat, and future projections show that the frequency, duration, and intensity of heat events will increase in the Southwest. Presently, there is a dearth of knowledge about how infrastructure may perform during heat waves or could contribute to social vulnerability. To understand how buildings perform in heat and potentially stress people, indoor air temperature changes when air conditioning is inaccessible are modeled for building archetypes in Los Angeles, California, and Phoenix, Arizona, when air conditioning is inaccessible is estimated.
An energy simulation model is used to estimate how quickly indoor air temperature changes when building archetypes are exposed to extreme heat. Building age and geometry (which together determine the building envelope material composition) are found to be the strongest indicators of thermal envelope performance. Older neighborhoods in Los Angeles and Phoenix (often more centrally located in the metropolitan areas) are found to contain the buildings whose interiors warm the fastest, raising particular concern because these regions are also forecast to experience temperature increases. To combat infrastructure vulnerability and provide heat refuge for residents, incentives should be adopted to strategically retrofit buildings where both socially vulnerable populations reside and increasing temperatures are forecast.

An inter-temporal life cycle cost and greenhouse gas emissions assessment of the Los Angeles roadway network is developed to identify how construction decisions lead to embedded impacts and create an emergent behavior (vehicle miles traveled by users) in the long run.
A video of the growth of the network and additional information are available here.