Filtering by
- Member of: Programs and Communities


Institutional factors are rarely examined in disaster risks in the Himalayan region, as much of the focus so far has been on improving the scientific understanding of the natural hazards and risks. This is particularly true for glacial lake outburst floods (GLOFs), which are natural hazards endemic to high mountain ranges such as the Andes, Alps, and Himalayas. While these have put mountain communities at risk for centuries, vulnerability is viewed to be increasing due to climate change. While the science behind the causes and characteristics of these hazards is now better understood, there is an absence of research understanding the social, cultural and institutional drivers behind creating effective strategies to mitigate risks from GLOFs. This is more so for the Himalayan region, where institutions have recently started to address this risk, but contention between local communities and external organizations can hinder mitigation efforts. To better understand how people’s perception towards disaster risk, a study conducted by Sherpa et al. (2019) examined the socio-economic and cultural perceptions surrounding GLOF hazards.
This research highlighted gaps in how scientific knowledge is disseminated to local communities, and the resulting distrust in government mitigation projects such as lake lowering and Early Warning Systems. A clear need developed to conduct an institutional analysis of the governance systems responsible for disaster risk management and their interaction with local communities. This study examines the institutional conditions under which mountain communities create effective adaptation strategies to address climate induced hazards. We use a mixed-methods approach, combining: a) quantitative analysis of household surveys collected in 2016-2017 and b) qualitative analysis that maps out the various factors of institutions that influence the success of community-based adaptation efforts. Additionally, GLOF case studies from Nepal are compared to those in Peru, where institutions have a longer history of managing GLOF risks. The research finds that there are several considerations including: lack of cross-scalar communication networks, lack of local knowledge and participation in policy processes, and ineffective interorganizational coordination of knowledge sharing and funding streams for local projects. This disconnect between external versus local and informal institutions becomes an inherent issue in projects where agenda setting by external organizations plays prevalent roles in project implementation.

The City of Phoenix (Arizona, USA) developed a Tree and Shade Master Plan and a Cool Roofs initiative to ameliorate extreme heat during the summer months in their arid city. This study investigates the impact of the City's heat mitigation strategies on daytime microclimate for a pre-monsoon summer day under current climate conditions and two climate change scenarios. We assessed the cooling effect of trees and cool roofs in a Phoenix residential neighborhood using the microclimate model ENVI-met. First, using xeric landscaping as a base, we created eight tree planting scenarios (from 0% canopy cover to 30% canopy cover) for the neighborhood to characterize the relationship between canopy cover and daytime cooling benefit of trees. In a second set of simulations, we ran ENVI-met for nine combined tree planting and landscaping scenarios (mesic, oasis, and xeric) with regular roofs and cool roofs under current climate conditions and two climate change projections. For each of the 54 scenarios, we compared average neighborhood mid-afternoon air temperatures and assessed the benefits of each heat mitigation measure under current and projected climate conditions. Findings suggest that the relationship between percent canopy cover and air temperature reduction is linear, with 0.14 °C cooling per percent increase in tree cover for the neighborhood under investigation. An increase in tree canopy cover from the current 10% to a targeted 25% resulted in an average daytime cooling benefit of up to 2.0 °C in residential neighborhoods at the local scale. Cool roofs reduced neighborhood air temperatures by 0.3 °C when implemented on residential homes. The results from this city-specific mitigation project will inform messaging campaigns aimed at engaging the city decision makers, industry, and the public in the green building and urban forestry initiatives.

Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University’s Tempe campus. During the course of 1 year, on selected clear calm days representative of each season, we conducted hourly meteorological transects from 7:00 a.m. to 6:00 p.m. and surveyed 1284 people about their thermal perception, comfort, and preferences. Shade lowered thermal sensation votes by approximately 1 point on a semantic differential 9-point scale, increasing thermal comfort in all seasons except winter. Shade type (tree or solar canopy) did not significantly impact perceived comfort, suggesting that artificial and natural shades are equally efficient in hot dry climates. Globe temperature explained 51 % of the variance in thermal sensation votes and was the only statistically significant meteorological predictor. Important non-meteorological factors included adaptation, thermal comfort vote, thermal preference, gender, season, and time of day. A regression of subjective thermal sensation on physiological equivalent temperature yielded a neutral temperature of 28.6 °C. The acceptable comfort range was 19.1 °C–38.1 °C with a preferred temperature of 20.8 °C. Respondents exposed to above neutral temperature felt more comfortable if they had been in air-conditioning 5 min prior to the survey, indicating a lagged response to outdoor conditions. Our study highlights the importance of active solar access management in hot urban areas to reduce thermal stress.

This report summarizes the proceedings of the workshop focusing primarily on two sessions: the first related to social vulnerability mapping and the second related to the identification and prioritization of interventions necessary to address the impacts of climate-sensitive hazards.