Matching Items (177)
Filtering by

Clear all filters

126601-Thumbnail Image.png
Description
Day-to-day decision makers on agricultural operations play a key role in maintaining both a sustainable and food secure agricultural society. This population, also defined as Principal Producers by the 2017 USDA Agricultural Census Report, has witnessed a significant decline in recent years, raising many questions surrounding why farmers are retiring

Day-to-day decision makers on agricultural operations play a key role in maintaining both a sustainable and food secure agricultural society. This population, also defined as Principal Producers by the 2017 USDA Agricultural Census Report, has witnessed a significant decline in recent years, raising many questions surrounding why farmers are retiring faster than they can be replaced. To look closely at this phenomenon, this study focuses on the State of Ohio to hear first-hand from producers what they need to be successful through a series of semi-structured interviews. This study also maps recent changes in variables that define this issue from 2007-2017 using QGIS and USDA Agricultural Census data. The findings from this study show the recent decline of mid-sized agricultural operations and provide evidence linking declining rates of principal producer populations with specific features consistent with industrial agriculture. These findings are specific to the State of Ohio, but also raise much larger questions about which populations are experiencing more rapid rates of farm exit, and what implications these trends have for food security on a broader scale.
ContributorsMoore, Phillip (Author) / Chhetri, Nalini (Contributor) / Leonard, Bryan (Contributor) / Shrestha, Milan (Contributor)
Created2020
Description

Increasing reliable produce farming and clean energy generation in the southwestern United States will be important for increasing the food supply for a growing population and reducing reliance on fossil fuels to generate energy. Combining greenhouses with photovoltaic (PV) films can allow both food and electric power to be produced

Increasing reliable produce farming and clean energy generation in the southwestern United States will be important for increasing the food supply for a growing population and reducing reliance on fossil fuels to generate energy. Combining greenhouses with photovoltaic (PV) films can allow both food and electric power to be produced simultaneously. This study tests if the combination of semi-transparent PV films and a transmission control layer can generate energy and spectrally control the transmission of light into a greenhouse. Testing the layer combinations in a variety of real-world conditions, it was shown that light can be spectrally controlled in a greenhouse. The transmission was overall able to be controlled by an average of 11.8% across the spectrum of sunlight, with each semi-transparent PV film able to spectrally select transmission of light in both the visible and near-infrared light wavelength. The combination of layers was also able to generate energy at an average efficiency of 8.71% across all panels and testing conditions. The most efficient PV film was the blue dyed, at 9.12%. This study also suggests additional improvements for this project, including the removal of the red PV film due to inefficiencies in spectral selection and additional tests with new materials to optimize plant growth and energy generation in a variety of light conditions.

ContributorsGunderson, Evan (Author) / Phelan, Patrick (Thesis director) / Villalobos, Rene (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
Arizona has been rapidly expanding in both population and construction over the last 20 years, and with the hot summer climate, many homeowners experience a significant increase in their utility bills. The cost to reduce these energy bills with home renovations can become expensive. This has become increasingly apparent over

Arizona has been rapidly expanding in both population and construction over the last 20 years, and with the hot summer climate, many homeowners experience a significant increase in their utility bills. The cost to reduce these energy bills with home renovations can become expensive. This has become increasingly apparent over the last few years with the impact that covid had on the global supply chain. Prices of materials and labor have never been higher, and with this, the price of energy continues to increase. Therefore, it is important to explore methods to make homes more energy-efficient without the price tag. In addition to benefitting the homeowner by decreasing the cost of their monthly utility bills, making homes more energy efficient will aid in the overall goal of reducing carbon emissions.
ContributorsFiller, Peyton (Author) / Phelan, Patrick (Thesis director) / Parrish, Kristen (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
Description

Wastewater treatment plants (WWTP) are facilities with a large potential for energy savings and improvements, but the factors behind their efficiency remain largely unstudied. In this thesis, a limited study toward developing a benchmarking tool to allow comparison of operation of WWTPs in terms of energy intensity (EI) will be

Wastewater treatment plants (WWTP) are facilities with a large potential for energy savings and improvements, but the factors behind their efficiency remain largely unstudied. In this thesis, a limited study toward developing a benchmarking tool to allow comparison of operation of WWTPs in terms of energy intensity (EI) will be analyzed. While the comparison of WWTPs is very complex, an initial start with comparing EI will be a useful tool. The methodology for this will first involve a literature review into EI at WWTPs to understand current statistics. After this, publicly available data gathered by Department of Energy sponsored Industrial Assessment Centers (IAC) from 2009 to 2021 of WWTP EI will be studied to show the potential for improvement of EI. This comparison can highlight certain states that currently exhibit more efficient plants, change in efficiency over time, as well as compare specific treatment technologies in literature to the general data gathered from the IAC. Lastly, the first step toward development of this benchmarking tool is a study of the 13 WWTP operations analyzed by the Arizona State University (ASU) IAC using a data envelopment analysis (DEA). This DEA can begin to show how a tool could be used with more data to accurately compare and benchmark a WWTP based on performances of similar WWTPs. This tool could allow operators a possibility of seeing how well their performance compares, and work toward an improvement in their EI.

ContributorsWickman, Sydney (Author) / Villalobos, Rene (Thesis director) / Phelan, Patrick (Committee member) / Gungor-Demirci, Gamze (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Sustainable Engineering & Built Envirnmt (Contributor)
Created2022-12
Description

Water heaters that are manufactured for swimming pools come in several forms, most of which require an electrical input for a source of power. Passive-circulation systems, however, require no electrical power input because fluid circulation occurs as a result of thermal gradients. In solar-based systems, thermal gradients are developed by

Water heaters that are manufactured for swimming pools come in several forms, most of which require an electrical input for a source of power. Passive-circulation systems, however, require no electrical power input because fluid circulation occurs as a result of thermal gradients. In solar-based systems, thermal gradients are developed by energy collected from sunlight. The combination of solar collection and passive circulation yields a system in which fluids, particularly water, are heated and circulated without need of assistance from external mechanical or electrical sources. The design of such a system was adapted from that of forced-circulation solar collector systems, as were the equations describing its thermodynamic properties. The design was developed based on such constraints as material corrosion resistance, overall system cost, and location-controlled size limitations. The thermodynamic description of the designed system was adjusted on the basis of the designed system’s physical aspects, such as the configuration and material of each component within the solar collector. Numerical analysis performed with the altered thermodynamic equations projected a total energy gain of 7.39 W between 9:00 and 10:00 A.M. and a total energy gain of 13.12 W between 4:00 and 5:00 P.M. The temperature of heated water exiting the collector system was projected to be 17.62°C in the morning and 25.56°C in the afternoon. The morning projection utilized an initial fluid temperature of 12°C and an ambient air temperature of 13°C, while the afternoon projection utilized an initial fluid temperature of 17°C and an ambient air temperature of 22°C. Field testing of the designed passive thermosyphon solar collector system was performed over a period of about one month with one temperature measurement taken at the collector outlet in the morning and another taken in the afternoon. For an ambient air temperature of 13°C, the linear regression developed from the morning dataset yielded an outlet water temperature of 20°C and that for the afternoon dataset yielded an outlet water temperature of 39°C for an ambient air temperature of 17°C. The percentage error between the projected and measured results was 13.51% for the morning period and 52.58% for the afternoon period. Numerical simulation and field data demonstrated that while the collector system operated successfully, its effects were limited to the volume of water immediately surrounding the outlet of the system; the rate of circulation within the system was too low for there to be a meaningful increase in the temperature of the water body at large. The stated results demonstrate that while the particular configuration of passive circulation solar collection technology developed in this instance is capable of transferring solar thermal energy to water without additional energy sources, significant modifications are necessary in order to improve the effectiveness of the technology. Such changes may come from improvements in material availability or alterations to the configuration of components of the collector system.

ContributorsZimmerman, Julia Elizabeth (Author) / Garcia, Margaret (Thesis director) / Phelan, Patrick (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
Solar cells are an increasingly important energy source for meeting growing energy demands. Organic photovoltaics in particular have potential in this area due to their low cost and the relative abundance of their constituents. One concern with the inverted configuration (a type of OPV with increased long-term stability) is their

Solar cells are an increasingly important energy source for meeting growing energy demands. Organic photovoltaics in particular have potential in this area due to their low cost and the relative abundance of their constituents. One concern with the inverted configuration (a type of OPV with increased long-term stability) is their reliance on activation by ultraviolet (UV) light. Here we examine the incorporation of a new electron transport layer (ETL) material, zinc tin oxide (ZTO), in order to assess its interaction with UV light. Current-voltage characteristics were analyzed using a 420 nm cutoff filter to control UV light exposure. ZTO proved to be an adequate alternative to ZnO when comparing photovoltaic response. However, no improvement was found in terms of UV light activation. In addition, recent works show that oxygen plasma treatment of metal oxides used for hole transport layers modifies the work function and yields higher efficiency devices. Spin cast benzyl phosphonic acid self-assembled monolayers (BPA SAMs) provide similar results without the need for plasma treatment. Here we examine the use of BPA SAMs in standard devices utilizing PV2000, a proprietary active layer blend made by Plextronics. The use of BPA SAMs on a nickel oxide hole transport layer deepened the work function significantly, yielding greater device performance.
ContributorsJackson, Skyler (Author) / Phelan, Patrick (Thesis director) / Gust, Devans (Committee member) / Barrett, The Honors College (Contributor)
Created2014-05
Description
An investigation is undertaken of a prototype building-integrated solar photovoltaic-powered thermal storage system and air conditioning unit. The study verifies previous thermodynamic and economic conclusions and provides a more thorough analysis. A parameterized model was created for optimization of the system under various conditions. The model was used to evaluate

An investigation is undertaken of a prototype building-integrated solar photovoltaic-powered thermal storage system and air conditioning unit. The study verifies previous thermodynamic and economic conclusions and provides a more thorough analysis. A parameterized model was created for optimization of the system under various conditions. The model was used to evaluate energy and cost savings to determine viability of the system in several circumstances, such as a residence in Phoenix with typical cooling demand. The proposed design involves a modified chest freezer as a thermal storage tank with coils acting as the evaporator for the refrigeration cycle. Surrounding the coils, the tank contains small containers of water for high-density energy storage submerged in a low freezing-point solution of propylene glycol. The cooling power of excess photovoltaic and off-peak grid power that is generated by the air conditioning compressor is stored in the thermal storage tank by freezing the pure water. It is extracted by pumping the glycol across the ice containers and into an air handler to cool the building. Featured results of the modeling include the determination of an optimized system for a super-peak rate plan, grid-connected Phoenix house that has a 4-ton cooling load and requires a corresponding new air conditioner at 4.5 kW of power draw. Optimized for the highest payback over a ten year period, the system should consist of a thermal storage tank containing 454 liters (120 gallons) of water, a 3-ton rated air conditioning unit, requiring 2.7 kW, which is smaller than conventionally needed, and no solar photovoltaic array. The monthly summer savings would be $45.The upfront cost would be $5489, compared to a conventional system upfront cost of $5400, for a payback period of 0.33 years. Over ten years, this system will provide $2600 of savings. To optimize the system for the highest savings over a twenty year period, a thermal storage tank containing 272 liters (72 gallons) of water, a 40-m2 photovoltaic array with 15% efficiency, and a 3.5-ton, 3.1-kW rated air conditioning unit should be installed for an upfront cost of $19,900. This would provide monthly summer savings of $225 and 1062 kWh grid electricity, with a payback period of only 11 years and a total cost savings of $12,300 over twenty years. In comparison, a system with the same size photovoltaic array but without storage would result in a payback period of 16 years. Results are also determined for other cooling requirements and installation sizes, such that the viability of this type of system in different conditions can be discussed. The use of this model for determining the optimized system configuration given different constraints is also described.
ContributorsMagerman, Beth Francine (Author) / Phelan, Patrick (Thesis director) / Goodnick, Stephen (Committee member) / Chhetri, Nalini (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2013-05
Description
Part of the AORA and LightWorks collaboration in utilizing exhaust heat for the AORA Tulip is the purpose to design a heat transport system that meets system requirements. The investigation included research in potential fluids, equipment, costs, and conducting an analysis to determine favorably fluids. The operating range

Part of the AORA and LightWorks collaboration in utilizing exhaust heat for the AORA Tulip is the purpose to design a heat transport system that meets system requirements. The investigation included research in potential fluids, equipment, costs, and conducting an analysis to determine favorably fluids. The operating range of the system is 100℃ to 200℃ from the 270℃ exhaust heat 30 meters high. The best, affordable heat transfer fluids (HTF) for this operating temperature range are: XCELTHERM CA, XCELTHERM 600, XCELTHERM 315, Therminol 55, Paratherm NF, Water, Dynalene PG-XT, and Dynalene HC-20. These fluids consist of synthetic oils, mineral oils, propylene glycol, potassium formate/water-based, and water. The ideal operating temperature and HTF depends on the location, accessibility to these fluids, and load application for the heat transport system design. Furthermore, the cost of electricity in the area is a factor for whether the system should use a variable speed drive on the pump. Water is the ideal heat transfer fluid if the operating temperature doesn’t exceed 170℃ and can be readily maintained to avoid corrosion. It has the lowest initial cost and most favorable heat transfer characteristics. The potassium formate/water-based Dynalene HC is the next best choice if the operating temperature doesn’t exceed 210℃. It has similar heat transfer characteristics, but costs more. Lastly, if the operating temperature range exceeds 210℃, then XCELTHERM 600 (white oil) is likely the best HTF to use. It has an operating range up to 315℃, has favorable characteristics, the most affordable oil price, is food contact rated, and has one of the longest life of any fluid of its type.
ContributorsHickey, Andrew William (Author) / Phelan, Patrick (Thesis director) / Stechel, Ellen (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
In this investigation, copper slag was used as a coarse aggregate in four different mixes of concrete, consisting of 0%, 25%, 50%, and 100% copper slag by volume. Locally available Salt river aggregate was used as a control, and mixes were tested for density, strength, thermal conductivity, specific heat capacity,

In this investigation, copper slag was used as a coarse aggregate in four different mixes of concrete, consisting of 0%, 25%, 50%, and 100% copper slag by volume. Locally available Salt river aggregate was used as a control, and mixes were tested for density, strength, thermal conductivity, specific heat capacity, and thermal diffusivity. Density was shown to increase with increasing copper slag content, increasing an average of 2298 kg/m^3, 2522 kg/m^3, and 2652 kg/m^3 in the 25%, 50%, and 100% mixes. This represents a 15% increase in density from 0% to 100%. Compressive strength testing indicated that the presence of copper slag in concrete provides no definitive strength benefit over Salt River aggregate. This result was expected, as concrete's strength is primarily derived from the cement matrix and not the aggregate. Thermal conductivity showed a decreasing trend with increasing copper slag content. Th control mix had an average conductivity of 0.660 W/m*K, and the 25%, 50%, and 100% mixes had conductivities of 0.649 W/m*K, 0.647 W/m*K, and 0.519 W/m*K, respectively. This represents 21% drop in thermal conductivity over the control. This result was also expected, as materials formed at higher temperatures, like copper slag, tend to have lower thermal conductivities. Specific heat capacity testing yielded results that were statistically indeterminate, though unlike strength testing this arose from inaccurate assumptions made during testing. This also prevented accurate thermal diffusivity results, as diffusivity is a function of density, thermal conductivity, and specific heat capacity. However, given the trends of the first two parameters, it is plausible to say that diffusivity in copper slag concrete would be lower than that of the control ix. All of these results were plugged into ASU's Pavement Temperature Model to see what effect they had in mitigating the UHI effect.
ContributorsLaughlin, Colin (Author) / Kaloush, Kamil (Thesis director) / Phelan, Patrick (Committee member) / Witczak, Kenneth (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05
Description
Pavement surface temperature is calculated using a fundamental energy balance model developed previously. It can be studied using a one-dimensional mathematical model. The input to the model is changed, to study the effect of different properties of pavement on its diurnal surface temperatures. It is observed that the pavement surface

Pavement surface temperature is calculated using a fundamental energy balance model developed previously. It can be studied using a one-dimensional mathematical model. The input to the model is changed, to study the effect of different properties of pavement on its diurnal surface temperatures. It is observed that the pavement surface temperature has a microclimatic effect on the air temperature above it. A major increase in local air temperature is caused by heating of solid surfaces in that locality. A case study was done and correlations have been established to calculate the air temperature above a paved surface. Validation with in-situ pavement surface and air temperatures were made. Experimental measurement for the city of Phoenix shows the difference between the ambient air temperature of the city and the microclimatic air temperature above the pavement is approximately 10 degrees Fahrenheit. One mitigation strategy that has been explored is increasing the albedo of the paved surface. Although it will reduce the pavement surface temperature, leading to a reduction in air temperature close to the surface, the increased pavement albedo will also result in greater reflected solar radiation directed towards the building, thus increasing the building solar load. The first effect will imply a reduction in the building energy consumption, while the second effect will imply an increase in the building energy consumption. Simulation is done using the EnergyPlus tool, to find the microclimatic effect of pavement on the building energy performance. The results indicate the cooling energy savings of an office building for different types of pavements can be variable as much as 30%.
ContributorsSengupta, Shawli (Author) / Phelan, Patrick (Thesis advisor) / Kaloush, Kamil (Committee member) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2015