Matching Items (58)

Description
The reality of smart cities is here and now. The issues of data privacy in tech applications are apparent in smart cities. Privacy as an issue raised by many and addressed by few remains critical for smart cities’ success. It is the common responsibility of smart cities, tech application makers, and users to embark on the journey to solutions. Privacy is an individual problem that smart cities need to provide a collective solution for. The research focuses on understanding users’ data privacy preferences, what information they consider private, and what they need to protect. The research identifies the data security loopholes, data privacy roadblocks, and common opportunities for change to implement a proactive privacy-driven tech solution necessary to address and resolve tech-induced data privacy concerns among citizens. This dissertation aims at addressing the issue of data privacy in tech applications based on known methodologies to address the concerns they allow. Through this research, a data privacy survey on tech applications was conducted, and the results reveal users’ desires to become a part of the solution by becoming aware and taking control of their data privacy while using tech applications.
So, this dissertation gives an overview of the data privacy issues in tech, discusses available data privacy basis, elaborates on the different steps needed to create a robust remedy to data privacy concerns in enabling users’ awareness and control, and proposes two privacy applications one as a data privacy awareness solution and the other as a representation of the privacy control framework to address data privacy concerns in smart cities.
ContributorsMusafiri Mimo, Edgard (Author) / McDaniel, Troy (Thesis advisor) / Michael, Katina (Committee member) / Sullivan, Kenneth (Committee member) / Arizona State University (Publisher)
Created2022

Description
Fatigue in radiology is a readily studied area. Machine learning concepts appliedto the identification of fatigue are also readily available. However, the intersection
between the two areas is not a relative commonality. This study looks to explore the
intersection of fatigue in radiology and machine learning concepts by analyzing temporal
trends in multivariate time series data. A novel methodological approach using support
vector machines to observe temporal trends in time-based aggregations of time series data
is proposed. The data used in the study is captured in a real-world, unconstrained
radiology setting where gaze and facial metrics are captured from radiologists performing
live image reviews. The captured data is formatted into classes whose labels represent a
window of time during the radiologist’s review. Using the labeled classes, the decision
function and accuracy of trained, linear support vector machine models are evaluated to
produce a visualization of temporal trends and critical inflection points as well as the
contribution of individual features. Consequently, the study finds valid potential
justification in the methods suggested. The study offers a prospective use of maximummargin classification to demarcate the manipulation of an abstract phenomenon such as
fatigue on temporal data. Potential applications are envisioned that could improve the
workload distribution of the medical act.
ContributorsHayes, Matthew (Author) / McDaniel, Troy (Thesis advisor) / Coza, Aurel (Committee member) / Venkateswara, Hemanth (Committee member) / Arizona State University (Publisher)
Created2022

Description
One of the long-standing issues that has arisen in the sports medicine field is identifying the ideal methodology to optimize recovery following anterior cruciate ligament reconstruction (ACLR). The perioperative period for ACLR is notoriously heterogeneous in nature as it consists of many variables that can impact surgical outcomes. While there has been extensive literature published regarding the efficacy of various recovery and rehabilitation topics, it has been widely acknowledged that certain modalities within the field of ACLR rehabilitation need further high-quality evidence to support their use in clinical practice, such as blood flow restriction (BFR) training. BFR training involves the application of a tourniquet-like cuff to the proximal aspect of a limb prior to exercise; the cuff is inflated so that it occludes venous flow but allows arterial inflow. BFR is usually combined with low-intensity (LI) resistance training, with resistance as low as 20% of one-repetition maximum (1RM). LI-BFR has been used as an emerging clinical modality to combat postoperative atrophy of the quadriceps muscles for those who have undergone ACLR, as these individuals cannot safely tolerate high muscular tension exercise after surgery. Impairments of the quadriceps are the major cause of poor functional status of patients following an otherwise successful ACLR procedure; however, these impairments can be mitigated with preoperative rehabilitation done before surgery. It was hypothesized that the use of a preoperative LI-BFR training protocol could help improve postoperative outcomes following ACLR; primarily, strength and hypertrophy of the quadriceps. When compared with a SHAM control group, subjects who were randomized to a BFR intervention group made greater preoperative strength gains in the quadriceps and recovered quadriceps mass at an earlier timepoint than that of the SHAM group aftersurgery; however, the gains made in strength were not able to be maintained in the 8-week postoperative period. While these results do not support the use of LI-BFR from the short-term perspective after ACLR, follow-up data will be used to investigate trends in re-injury and return to sport rates to evaluate the efficacy of the use of LI-BFR from a long-term perspective.
ContributorsGlattke, Kaycee Elizabeth (Author) / Lockhart, Thurmon (Thesis advisor) / McDaniel, Troy (Committee member) / Banks, Scott (Committee member) / Peterson, Daniel (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2022

Description
With an aging population, the number of later in life health related incidents like stroke stand to become more prevalent. Unfortunately, the majority those who are most at risk for debilitating heath episodes are either uninsured or under insured when it comes to long term physical/occupational therapy. As insurance companies lower coverage and/or raise prices of plans with sufficient coverage, it can be expected that the proportion of uninsured/under insured to fully insured people will rise. To address this, lower cost alternative methods of treatment must be developed so people can obtain the treated required for a sufficient recovery. The presented robotic glove employs low cost fabric soft pneumatic actuators which use a closed loop feedback controller based on readings from embedded soft sensors. This provides the device with proprioceptive abilities for the dynamic control of each independent actuator. Force and fatigue tests were performed to determine the viability of the actuator design. A Box and Block test along with a motion capture study was completed to study the performance of the device. This paper presents the design and classification of a soft robotic glove with a feedback controller as a at-home stroke rehabilitation device.
ContributorsAxman, Reed C (Author) / Zhang, Wenlong (Thesis advisor) / Santello, Marco (Committee member) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2022

Description
Ophthalmoscopes are integral to diagnosing various eye conditions; however, they often come at a hefty cost and are not generally portable, limiting access. With the increase in the prevalence of smart devices and improvements to their imaging capabilities, these devices have the potential to benefit areas where specialized imaging infrastructure is not well established. Smart device cameras alone cannot replace an ophthalmoscope. However, with the addition of lens and optics, it becomes possible to take diagnostic quality images. The goal is to design a modular system that acts as an adapter to a smart device enabling any user to take retinal images and corneal images with little to no previous experience. The device should be cost-effective, reliable, and easy to use. The device is not meant to replace conventional funduscopes but acts in areas where current units fail. Applications in non-optimal settings, low resource areas, or areas that currently receive suboptimal care due to geographic or socioeconomic barriers are examples where this device could be used. The introduction of screening programs run by nonspecialized medical personnel with devices that can capture and transmit quality eye images minimizes the long-term complications of degenerative eye conditions.
ContributorsSpyres, Dean (Author) / McDaniel, Troy (Thesis advisor) / Patel, Dave (Committee member) / Gintz, Jerry (Committee member) / Arizona State University (Publisher)
Created2022

Description
The burden of adaptation has been a major limiting factor in the adoption rates of new wearable assistive technologies. This burden has created a necessity for the exploration and combination of two key concepts in the development of upcoming wearables: anticipation and invisibility. The combination of these two topics has created the field of Anticipatory and Invisible Interfaces (AII)
In this dissertation, a novel framework is introduced for the development of anticipatory devices that augment the proprioceptive system in individuals with neurodegenerative disorders in a seamless way that scaffolds off of existing cognitive feedback models. The framework suggests three main categories of consideration in the development of devices which are anticipatory and invisible:
• Idiosyncratic Design: How do can a design encapsulate the unique characteristics of the individual in the design of assistive aids?
• Adaptation to Intrapersonal Variations: As individuals progress through the various stages of a disability
eurological disorder, how can the technology adapt thresholds for feedback over time to address these shifts in ability?
• Context Aware Invisibility: How can the mechanisms of interaction be modified in order to reduce cognitive load?
The concepts proposed in this framework can be generalized to a broad range of domains; however, there are two primary applications for this work: rehabilitation and assistive aids. In preliminary studies, the framework is applied in the areas of Parkinsonian freezing of gait anticipation and the anticipation of body non-compliance during rehabilitative exercise.
In this dissertation, a novel framework is introduced for the development of anticipatory devices that augment the proprioceptive system in individuals with neurodegenerative disorders in a seamless way that scaffolds off of existing cognitive feedback models. The framework suggests three main categories of consideration in the development of devices which are anticipatory and invisible:
• Idiosyncratic Design: How do can a design encapsulate the unique characteristics of the individual in the design of assistive aids?
• Adaptation to Intrapersonal Variations: As individuals progress through the various stages of a disability
eurological disorder, how can the technology adapt thresholds for feedback over time to address these shifts in ability?
• Context Aware Invisibility: How can the mechanisms of interaction be modified in order to reduce cognitive load?
The concepts proposed in this framework can be generalized to a broad range of domains; however, there are two primary applications for this work: rehabilitation and assistive aids. In preliminary studies, the framework is applied in the areas of Parkinsonian freezing of gait anticipation and the anticipation of body non-compliance during rehabilitative exercise.
ContributorsTadayon, Arash (Author) / Panchanathan, Sethuraman (Thesis advisor) / McDaniel, Troy (Committee member) / Krishnamurthi, Narayanan (Committee member) / Davulcu, Hasan (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2020

Description
Individuals with voice disorders experience challenges communicating daily. These challenges lead to a significant decrease in the quality of life for individuals with dysphonia. While voice amplification systems are often employed as a voice-assistive technology, individuals with voice disorders generally still experience difficulties being understood while using voice amplification systems. With the goal of developing systems that help improve the quality of life of individuals with dysphonia, this work outlines the landscape of voice-assistive technology, the inaccessibility of state-of-the-art voice-based technology and the need for the development of intelligibility improving voice-assistive technologies designed both with and for individuals with voice disorders. With the rise of voice-based technologies in society, in order for everyone to participate in the use of voice-based technologies individuals with voice disorders must be included in both the data that is used to train these systems and the design process. An important and necessary step towards the development of better voice assistive technology as well as more inclusive voice-based systems is the creation of a large, publicly available dataset of dysphonic speech. To this end, a web-based platform to crowdsource voice disorder speech was developed to create such a dataset. This dataset will be released so that it is freely and publicly available to stimulate research in the field of voice-assistive technologies. Future work includes building a robust intelligibility estimation model, as well as employing that model to measure, and therefore enhance, the intelligibility of a given utterance. The hope is that this model will lead to the development of voice-assistive technology using state-of-the-art machine learning models to help individuals with voice disorders be better understood.
ContributorsMoore, Meredith Kay (Author) / Panchanathan, Sethuraman (Thesis advisor) / Berisha, Visar (Committee member) / McDaniel, Troy (Committee member) / Venkateswara, Hemanth (Committee member) / Arizona State University (Publisher)
Created2020

Description
In the last decade deep learning based models have revolutionized machine learning and computer vision applications. However, these models are data-hungry and training them is a time-consuming process. In addition, when deep neural networks are updated to augment their prediction space with new data, they run into the problem of catastrophic forgetting, where the model forgets previously learned knowledge as it overfits to the newly available data. Incremental learning algorithms enable deep neural networks to prevent catastrophic forgetting by retaining knowledge of previously observed data while also learning from newly available data.
This thesis presents three models for incremental learning; (i) Design of an algorithm for generative incremental learning using a pre-trained deep neural network classifier; (ii) Development of a hashing based clustering algorithm for efficient incremental learning; (iii) Design of a student-teacher coupled neural network to distill knowledge for incremental learning. The proposed algorithms were evaluated using popular vision datasets for classification tasks. The thesis concludes with a discussion about the feasibility of using these techniques to transfer information between networks and also for incremental learning applications.
This thesis presents three models for incremental learning; (i) Design of an algorithm for generative incremental learning using a pre-trained deep neural network classifier; (ii) Development of a hashing based clustering algorithm for efficient incremental learning; (iii) Design of a student-teacher coupled neural network to distill knowledge for incremental learning. The proposed algorithms were evaluated using popular vision datasets for classification tasks. The thesis concludes with a discussion about the feasibility of using these techniques to transfer information between networks and also for incremental learning applications.
ContributorsPatil, Rishabh (Author) / Venkateswara, Hemanth (Thesis advisor) / Panchanathan, Sethuraman (Thesis advisor) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2020

Description
Humans have a great ability to recognize objects in different environments irrespective of their variations. However, the same does not apply to machine learning models which are unable to generalize to images of objects from different domains. The generalization of these models to new data is constrained by the domain gap. Many factors such as image background, image resolution, color, camera perspective and variations in the objects are responsible for the domain gap between the training data (source domain) and testing data (target domain). Domain adaptation algorithms aim to overcome the domain gap between the source and target domains and learn robust models that can perform well across both the domains.
This thesis provides solutions for the standard problem of unsupervised domain adaptation (UDA) and the more generic problem of generalized domain adaptation (GDA). The contributions of this thesis are as follows. (1) Certain and Consistent Domain Adaptation model for closed-set unsupervised domain adaptation by aligning the features of the source and target domain using deep neural networks. (2) A multi-adversarial deep learning model for generalized domain adaptation. (3) A gating model that detects out-of-distribution samples for generalized domain adaptation.
The models were tested across multiple computer vision datasets for domain adaptation.
The dissertation concludes with a discussion on the proposed approaches and future directions for research in closed set and generalized domain adaptation.
This thesis provides solutions for the standard problem of unsupervised domain adaptation (UDA) and the more generic problem of generalized domain adaptation (GDA). The contributions of this thesis are as follows. (1) Certain and Consistent Domain Adaptation model for closed-set unsupervised domain adaptation by aligning the features of the source and target domain using deep neural networks. (2) A multi-adversarial deep learning model for generalized domain adaptation. (3) A gating model that detects out-of-distribution samples for generalized domain adaptation.
The models were tested across multiple computer vision datasets for domain adaptation.
The dissertation concludes with a discussion on the proposed approaches and future directions for research in closed set and generalized domain adaptation.
ContributorsNagabandi, Bhadrinath (Author) / Panchanathan, Sethuraman (Thesis advisor) / Venkateswara, Hemanth (Thesis advisor) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2020

Description
Humans have an excellent ability to analyze and process information from multiple domains. They also possess the ability to apply the same decision-making process when the situation is familiar with their previous experience.
Inspired by human's ability to remember past experiences and apply the same when a similar situation occurs, the research community has attempted to augment memory with Neural Network to store the previously learned information. Together with this, the community has also developed mechanisms to perform domain-specific weight switching to handle multiple domains using a single model. Notably, the two research fields work independently, and the goal of this dissertation is to combine their capabilities.
This dissertation introduces a Neural Network module augmented with two external memories, one allowing the network to read and write the information and another to perform domain-specific weight switching. Two learning tasks are proposed in this work to investigate the model performance - solving mathematics operations sequence and action based on color sequence identification. A wide range of experiments with these two tasks verify the model's learning capabilities.
Inspired by human's ability to remember past experiences and apply the same when a similar situation occurs, the research community has attempted to augment memory with Neural Network to store the previously learned information. Together with this, the community has also developed mechanisms to perform domain-specific weight switching to handle multiple domains using a single model. Notably, the two research fields work independently, and the goal of this dissertation is to combine their capabilities.
This dissertation introduces a Neural Network module augmented with two external memories, one allowing the network to read and write the information and another to perform domain-specific weight switching. Two learning tasks are proposed in this work to investigate the model performance - solving mathematics operations sequence and action based on color sequence identification. A wide range of experiments with these two tasks verify the model's learning capabilities.
ContributorsPatel, Deep Chittranjan (Author) / Ben Amor, Hani (Thesis advisor) / Banerjee, Ayan (Committee member) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2020