Matching Items (775)
Filtering by

Clear all filters

Description

In this project, I get at the finer details of what altruism really is, and when an act really counts as altruistic. I draw upon many articles and books that discuss the topic, but some left many questions unanswered. I conducted several close readings of the manga, One Piece, to

In this project, I get at the finer details of what altruism really is, and when an act really counts as altruistic. I draw upon many articles and books that discuss the topic, but some left many questions unanswered. I conducted several close readings of the manga, One Piece, to answer these questions. Through the thematic relevance of the series, I discovered more reliable forms of emotional motivation, identified and analyzed highly similar altruistic imposters, and presented a more comprehensive image of the topic by analyzing egotism.

ContributorsLord Ender Laing, James (Author) / Schmidt, Peter (Thesis director) / Wilson, Bradley (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The Electoral College, the current electoral system in the U.S., operates on a Winner-Take-All or First Past the Post (FPTP) principle, where the candidate with the most votes wins. Despite the Electoral College being the current system, it is problematic. According to Lani Guinier in Tyranny of the Majority, “the

The Electoral College, the current electoral system in the U.S., operates on a Winner-Take-All or First Past the Post (FPTP) principle, where the candidate with the most votes wins. Despite the Electoral College being the current system, it is problematic. According to Lani Guinier in Tyranny of the Majority, “the winner-take-all principle invariably wastes some votes” (121). This means that the majority group gets all of the power in an election while the votes of the minority groups are completely wasted and hold little to no significance. Additionally, FPTP systems reinforce a two-party system in which neither candidate could satisfy the majority of the electorate’s needs and issues, yet forces them to choose between the two dominant parties. Moreover, voting for a third party candidate only hurts the voter since it takes votes away from the party they might otherwise support and gives the victory to the party they prefer the least, ensuring that the two party system is inescapable. Therefore, a winner-take-all system does not provide the electorate with fair or proportional representation and creates voter disenfranchisement: it offers them very few choices that appeal to their needs and forces them to choose a candidate they dislike. There are, however, alternative voting systems that remedy these issues, such as a Ranked voting system, in which voters can rank their candidate choices in the order they prefer them, or a Proportional voting system, in which a political party acquires a number of seats based on the proportion of votes they receive from the voter base. Given these alternatives, we will implement a software simulation of one of these systems to demonstrate how they work in contrast to FPTP systems, and therefore provide evidence of how these alternative systems could work in practice and in place of the current electoral system.

ContributorsSummers, Jack Gillespie (Co-author) / Martin, Autumn (Co-author) / Burger, Kevin (Thesis director) / Voorhees, Matthew (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

System and software verification is a vital component in the development and reliability of cyber-physical systems - especially in critical domains where the margin of error is minimal. In the case of autonomous driving systems (ADS), the vision perception subsystem is a necessity to ensure correct maneuvering of the environment

System and software verification is a vital component in the development and reliability of cyber-physical systems - especially in critical domains where the margin of error is minimal. In the case of autonomous driving systems (ADS), the vision perception subsystem is a necessity to ensure correct maneuvering of the environment and identification of objects. The challenge posed in perception systems involves verifying the accuracy and rigidity of detections. The use of Spatio-Temporal Perception Logic (STPL) enables the user to express requirements for the perception system to verify, validate, and ensure its behavior; however, a drawback to STPL involves its accessibility. It is limited to individuals with an expert or higher-level knowledge of temporal and spatial logics, and the formal-written requirements become quite verbose with more restrictions imposed. In this thesis, I propose a domain-specific language (DSL) catered to Spatio-Temporal Perception Logic to enable non-expert users the ability to capture requirements for perception subsystems while reducing the necessity to have an experienced background in said logic. The domain-specific language for the Spatio-Temporal Perception Logic is built upon the formal language with two abstractions. The main abstraction captures simple programming statements that are translated to a lower-level STPL expression accepted by the testing monitor. The STPL DSL provides a seamless interface to writing formal expressions while maintaining the power and expressiveness of STPL. These translated equivalent expressions are capable of directing a standard for perception systems to ensure the safety and reduce the risks involved in ill-formed detections.

ContributorsAnderson, Jacob (Author) / Fainekos, Georgios (Thesis director) / Yezhou, Yang (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The market for searching for food online is exploding. According to one expert at Google, “there are over 1 billion restaurant searches on Google every month” (Kelso, 2020). To capture this market and ride the general digital trend of internet personalization (as evidenced by Google search results, ads, YouTube and

The market for searching for food online is exploding. According to one expert at Google, “there are over 1 billion restaurant searches on Google every month” (Kelso, 2020). To capture this market and ride the general digital trend of internet personalization (as evidenced by Google search results, ads, YouTube and social media algorithms, etc), we created Munch to be an algorithm meant to help people find food they’ll love. <br/><br/>Munch offers the ability to search for food by restaurant or even as specific as a menu item (ex: search for the best Pad Thai). The best part? It is customized to your preferences based on a quiz you take when you open the app and from that point continuously learns from your behavior.<br/><br/>This thesis documents the journey of the team who founded Munch, what progress we made and the reasoning behind our decisions, where this idea fits in a competitive marketplace, how much it could be worth, branding, and our recommendations for a successful app in the future.

ContributorsInocencio, Phillippe Adriane (Co-author) / Rajan, Megha (Co-author) / Krug, Hayden (Co-author) / Byrne, Jared (Thesis director) / Sebold, Brent (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Neoliberal feminism has gained significant popularity in fourth-wave feminist media. In this paper, I analyze the 2017 limited television series "Big Little Lies" to uncover the intricacies of neoliberal feminist theory in practice, particularly how it speaks to gender, race, and class relations.

ContributorsLuther, Molly E (Author) / Moran, Stacey (Thesis director) / Henderson-Singer, Sharon (Committee member) / Arts, Media and Engineering Sch T (Contributor) / School of Social Transformation (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a

This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a generator to attempt to satisfy the discriminator. The network design is described in further detail below; however there are several potential issues that arise including the averaging of a color for certain images such that small details in an image are not assigned unique colors leading to a neutral blend. We attempt to mitigate this issue as much as possible.

ContributorsKoleber, Keith M. (Co-author) / Lobo, Ian (Co-author) / Markabawi, Jah (Co-author) / Masud, Abdullah (Co-author) / Yang, Yingzhen (Thesis director) / Wang, Yancheng (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The goal of this thesis project was to develop a digital, quantitative assessment of executive functioning skills and problem solving abilities. This assessment was intended to serve as a relative measure of executive functions and problem solving abilities rather than a diagnosis; the main purpose was to identify areas for

The goal of this thesis project was to develop a digital, quantitative assessment of executive functioning skills and problem solving abilities. This assessment was intended to serve as a relative measure of executive functions and problem solving abilities rather than a diagnosis; the main purpose was to identify areas for improvement and provide individuals with an understanding of their current ability levels. To achieve this goal, we developed a web-based assessment through Unity that used gamelike modifications of Flanker, Antisaccade, Embedded Images, Raven’s Matrices, and Color / Order Memory tasks. Participants were invited to access the assessment at www.ExecutiveFunctionLevel.com to complete the assessment and their results were analyzed. The findings of this project indicate that these tasks accurately represent executive functioning skills, the Flanker Effect is present in the collected data, and there is a notable correlation between each of the REFLEX challenges. In conclusion, we successfully developed a short, gamelike, online assessment of executive functioning and problem solving abilities. Future developments of REFLEX could look into immediate scoring, developing a mobile application, and externally validating the results.

ContributorsAnderson, Gabriel (Co-author) / Anderson, Mikayla (Co-author) / Brewer, Gene (Thesis director) / Kobayashi, Yoshihiro (Committee member) / Johnson, Mina (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This project is a series of two YouTube videos that follow me learning new skills. The first is soldering, and the second is jumping a bicycle. The goal of this project is to use it to hone my cinematography skills and to inspire other beginners to try new things by

This project is a series of two YouTube videos that follow me learning new skills. The first is soldering, and the second is jumping a bicycle. The goal of this project is to use it to hone my cinematography skills and to inspire other beginners to try new things by highlighting my own trials and tribulations and being vulnerable.

ContributorsNicholls, Joseph Kenji (Author) / Nascimento, Eliciana (Thesis director) / Meirelles, Rodrigo (Committee member) / The Sidney Poitier New American Film School (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a

This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a generator to attempt to satisfy the discriminator. The network design is described in further detail below; however there are several potential issues that arise including the averaging of a color for certain images such that small details in an image are not assigned unique colors leading to a neutral blend. We attempt to mitigate this issue as much as possible.

ContributorsLobo, Ian (Co-author) / Koleber, Keith (Co-author) / Markabawi, Jah (Co-author) / Masud, Abdullah (Co-author) / Yang, Yingzhen (Thesis director) / Wang, Yancheng (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

When examining the average college campus, it becomes obvious that students feel rushed from one place to another as they try to participate in class, clubs, and extracurricular activities. One way that students can feel more comfortable and relaxed around campus is to introduce the aspect of gaming. Studies show

When examining the average college campus, it becomes obvious that students feel rushed from one place to another as they try to participate in class, clubs, and extracurricular activities. One way that students can feel more comfortable and relaxed around campus is to introduce the aspect of gaming. Studies show that “Moderate videogame play has been found to contribute to emotional stability” (Jones, 2014). This demonstrates that the stress of college can be mitigated by introducing the ability to interact with video games. This same concept has been applied in the workplace, where studies have shown that “Gaming principles such as challenges, competition, rewards and personalization keep employees engaged and learning” (Clark, 2020). This means that if we manage to gamify the college experience, students will be more engaged which will increase and stabilize the retention rate of colleges which utilize this type of experience. Gaming allows students to connect with their peers in a casual environment while also allowing them to find resources around campus and find new places to eat and relax. We plan to gamify the college experience by introducing augmented reality in the form of an app. Augmented reality is “. . . a technology that combines virtual information with the real world” (Chen, 2019). College students will be able to utilize the resources and amenities available to them on campus while completing quests that help them within the application. This demonstrates the ability for video games to engage students using artificial tasks but real actions and experiences which help them feel more connected to campus. Our Founders Lab team has developed and tested an AR application that can be used to connect students with their campus and the resources available to them.

ContributorsRangarajan, Padmapriya (Co-author) / Klein, Jonathan (Co-author) / Li, Shimei (Co-author) / Byrne, Jared (Thesis director) / Pierce, John (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05