Filtering by
- Creators: Computer Science and Engineering Program
This project aims to mint NFT's on the Ethereum blockchain with upgraded functionality. This functionality helps user verifiability and increases a user's control over their NFT.
The process of learning a new skill can be time consuming and difficult for both the teacher and the student, especially when it comes to computer modeling. With so many terms and functionalities to familiarize oneself with, this task can be overwhelming to even the most knowledgeable student. The purpose of this paper is to describe the methodology used in the creation of a new set of curricula for those attempting to learn how to use the Dynamic Traffic Simulation Package with Multi-Resolution Modeling. The current DLSim curriculum currently relates information via high-concept terms and complicated graphics. The information in this paper aims to provide a streamlined set of curricula for new users of DLSim, including lesson plans and improved infographics.
The HLA, Human Leukocyte Antigens, are encoded by a polymorphic set of genes where even a single base change can impact the function of the body’s immune response to foreign antigens [1]. Although many methods exist to type these alleles using whole-genome sequencing (WGS), few can use RNA sequencing (RNA-seq) to show the functional expression of the alleles with its inconsistency in coverage, and none of these allow for novel allele discovery. We present an approach using partially ordered graphs to project sequenced data onto the known alleles allowing for accurate and efficient typing of the HLA genes with flexibility for discovering new alleles and tolerance for poor sequence quality. This graph-guided approach to assembling and typing the HLA genes from RNA-seq has applications throughout precision medicine, facilitating the prevention and treatment of autoimmune diseases where allele expression can change. It is also a necessary step for determining donors for organ transplants with the least likelihood of rejection. This novel approach of combining database matching with partially ordered graphs for assembling genetic sequences of RNA-seq data could be applied towards typing other alleles.
This is a primer on the mathematic foundation of quantum mechanics. It seeks to introduce the topic in such a way that it is useful to both mathematicians and physicists by providing an extended example of abstract math concepts to work through and by going more in-depth in the math formalism than would normally be covered in a quantum mechanics class. The thesis begins by investigating functional analysis topics such as the Hilbert space and operators acting on them. Then it goes on to the postulates of quantum mechanics which extends the math formalism covered before to physics and works as the foundation for the rest of quantum mechanics.
Recent advancements in machine learning methods have allowed companies to develop advanced computer vision aided production lines that take advantage of the raw and labeled data captured by high-definition cameras mounted at vantage points in their factory floor. We experiment with two different methods of developing one such system to automatically track key components on a production line. By tracking the state of these key components using object detection we can accurately determine and report production line metrics like part arrival and start/stop times for key factory processes. We began by collecting and labeling raw image data from the cameras overlooking the factory floor. Using that data we trained two dedicated object detection models. Our training utilized transfer learning to start from a Faster R-CNN ResNet model trained on Microsoft’s COCO dataset. The first model we developed is a binary classifier that detects the state of a single object while the second model is a multiclass classifier that detects the state of two distinct objects on the factory floor. Both models achieved over 95% classification and localization accuracy on our test datasets. Having two additional classes did not affect the classification or localization accuracy of the multiclass model compared to the binary model.
Th NTRU cryptosystem is a lattice-based encryption scheme. Several parameters determine the speed, size, correctness rate and security of the algorithm. These parameters need to be carefully selected for the algorithm to function correctly. This thesis includes a short overview of the NTRU algorithm and its mathematical background before discussing the results of experimentally testing various different parameter sets for NTRU and determining the effect that different relationships between these parameters have on the overall effectiveness of NTRU.