Filtering by
- Creators: School of Life Sciences
- Creators: Computer Science and Engineering Program

In response to lack of access to healthy foods, many low-income communities are instituting local healthy corner store programs. Some stores also participate in the United States Department of Agriculture's Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) and the Supplemental Nutrition Assistance Program (SNAP). This study used two assessment tools to compare the healthfulness of offerings at stores participating in local healthy store programs (upgraded stores), WIC, and/or SNAP to that of similar non-participating stores.
Based on store audits conducted in 315 New Jersey corner stores in 2014, we calculated healthy food availability scores using subsections of the Nutrition Environment Measures Survey for Corner Stores (NEMS-CS-Availability) and a short-form corner store audit tool (SCAT). We used multivariable regression to examine associations between program participation and scores on both instruments.
Adjusting for store and block group characteristics, stores participating in a local healthy store program had significantly higher SCAT scores than did non-participating stores (upgraded: M = 3.18, 95% CI 2.65–3.71; non-upgraded: M = 2.52, 95% CI 2.32–2.73); scores on the NEMS-CS-Availability did not differ (upgraded: M = 12.8, 95% CI 11.6–14.1; non-upgraded: M = 12.5, 95% CI 12.0–13.0). WIC-participating stores had significantly higher scores compared to non-participating stores on both tools. Stores participating in SNAP only (and not in WIC) scored significantly lower on both instruments compared to non-SNAP stores.
WIC-participating and non-SNAP corner stores had higher healthfulness scores on both assessment tools. Upgraded stores had higher healthfulness scores compared to non-upgraded stores on the SCAT.

Objective
In response to recent national efforts to increase the availability of healthy food in small stores, we sought to understand the extent to which small food stores could implement the newly published Healthy Small Store Minimum Stocking Recommendations and reflect on the new US Department of Agriculture Food and Nutrition Service's final rule for stocking of staple foods for Supplemental Nutrition Assistance Program–approved retailers.
Design
We collected qualitative and quantitative data from 57 small stores in four states (Arizona, Delaware, Minnesota, and North Carolina) that accepted Supplemental Nutrition Assistance Program but not Special Supplemental Nutrition Assistance Program for Women, Infants, and Children benefits. Data from semistructured, in-depth interviews with managers/owners were transcribed, coded, and analyzed. We collected quantitative store inventory data onsite and later performed descriptive analyses.
Results
Store interviews revealed a reluctant willingness to stock healthy food and meet new recommendations. No stores met recommended fruit and vegetable stocking, although 79% carried at least one qualifying fruit and 74% carried at least one qualifying vegetable. Few stores met requirements for other food categories (ie, whole grains and low-fat dairy) with the exception of lean proteins, where stores carrying nuts or nut butter were more likely to meet the protein recommendation. Water and 100% juice were widely available and 68% met basic healthy beverage criteria.
Conclusions
In contrast to the inventory observed, most owners believed store stock met basic recommendations. Further, findings indicate that small stores are capable of stocking healthy products; however, technical and infrastructure support, as well as incentives, would facilitate shifts from staple to healthier staple foods. Retailers may need support to understand healthier product criteria and to drive consumer demand for new products.

The maintenance of chromosomal integrity is an essential task of every living organism and cellular repair mechanisms exist to guard against insults to DNA. Given the importance of this process, it is expected that DNA repair proteins would be evolutionarily conserved, exhibiting very minimal sequence change over time. However, BRCA1, an essential gene involved in DNA repair, has been reported to be evolving rapidly despite the fact that many protein-altering mutations within this gene convey a significantly elevated risk for breast and ovarian cancers.
Results
To obtain a deeper understanding of the evolutionary trajectory of BRCA1, we analyzed complete BRCA1 gene sequences from 23 primate species. We show that specific amino acid sites have experienced repeated selection for amino acid replacement over primate evolution. This selection has been focused specifically on humans and our closest living relatives, chimpanzees (Pan troglodytes) and bonobos (Pan paniscus). After examining BRCA1 polymorphisms in 7 bonobo, 44 chimpanzee, and 44 rhesus macaque (Macaca mulatta) individuals, we find considerable variation within each of these species and evidence for recent selection in chimpanzee populations. Finally, we also sequenced and analyzed BRCA2 from 24 primate species and find that this gene has also evolved under positive selection.
Conclusions
While mutations leading to truncated forms of BRCA1 are clearly linked to cancer phenotypes in humans, there is also an underlying selective pressure in favor of amino acid-altering substitutions in this gene. A hypothesis where viruses are the drivers of this natural selection is discussed.

Multicellular organisms consist of cells of many different types that are established during development. Each type of cell is characterized by the unique combination of expressed gene products as a result of spatiotemporal gene regulation. Currently, a fundamental challenge in regulatory biology is to elucidate the gene expression controls that generate the complex body plans during development. Recent advances in high-throughput biotechnologies have generated spatiotemporal expression patterns for thousands of genes in the model organism fruit fly Drosophila melanogaster. Existing qualitative methods enhanced by a quantitative analysis based on computational tools we present in this paper would provide promising ways for addressing key scientific questions.
Results
We develop a set of computational methods and open source tools for identifying co-expressed embryonic domains and the associated genes simultaneously. To map the expression patterns of many genes into the same coordinate space and account for the embryonic shape variations, we develop a mesh generation method to deform a meshed generic ellipse to each individual embryo. We then develop a co-clustering formulation to cluster the genes and the mesh elements, thereby identifying co-expressed embryonic domains and the associated genes simultaneously. Experimental results indicate that the gene and mesh co-clusters can be correlated to key developmental events during the stages of embryogenesis we study. The open source software tool has been made available at http://compbio.cs.odu.edu/fly/.
Conclusions
Our mesh generation and machine learning methods and tools improve upon the flexibility, ease-of-use and accuracy of existing methods.