Matching Items (36)
Filtering by
- Member of: ASU Electronic Theses and Dissertations

Description
In the nano-regime many materials exhibit properties that are quite different from their bulk counterparts. These nano-properties have been shown to be useful in a wide range of applications with nanomaterials being used for catalysts, in energy production, as protective coatings, and in medical treatment. While there is no shortage of exciting and novel applications, the world of nanomaterials suffers from a lack of large scale manufacturing techniques. The current methods and equipment used for manufacturing nanomaterials are generally slow, expensive, potentially dangerous, and material specific. The research and widespread use of nanomaterials has undoubtedly been hindered by this lack of appropriate tooling. This work details the effort to create a novel nanomaterial synthesis and deposition platform capable of operating at industrial level rates and reliability.
The tool, referred to as Deppy, deposits material via hypersonic impaction, a two chamber process that takes advantage of compressible fluids operating in the choked flow regime to accelerate particles to up several thousand meters per second before they impact and stick to the substrate. This allows for the energetic separation of the synthesis and deposition processes while still behaving as a continuous flow reactor giving Deppy the unique ability to independently control the particle properties and the deposited film properties. While the ultimate goal is to design a tool capable of producing a broad range of nanomaterial films, this work will showcase Deppy's ability to produce silicon nano-particle films as a proof of concept.
By adjusting parameters in the upstream chamber the particle composition was varied from completely amorphous to highly crystalline as confirmed by Raman spectroscopy. By adjusting parameters in the downstream chamber significant variation of the film's density was achieved. Further it was shown that the system is capable of making these adjustments in each chamber without affecting the operation of the other.
The tool, referred to as Deppy, deposits material via hypersonic impaction, a two chamber process that takes advantage of compressible fluids operating in the choked flow regime to accelerate particles to up several thousand meters per second before they impact and stick to the substrate. This allows for the energetic separation of the synthesis and deposition processes while still behaving as a continuous flow reactor giving Deppy the unique ability to independently control the particle properties and the deposited film properties. While the ultimate goal is to design a tool capable of producing a broad range of nanomaterial films, this work will showcase Deppy's ability to produce silicon nano-particle films as a proof of concept.
By adjusting parameters in the upstream chamber the particle composition was varied from completely amorphous to highly crystalline as confirmed by Raman spectroscopy. By adjusting parameters in the downstream chamber significant variation of the film's density was achieved. Further it was shown that the system is capable of making these adjustments in each chamber without affecting the operation of the other.
ContributorsFirth, Peter (Author) / Holman, Zachary C (Thesis advisor) / Kozicki, Michael (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2015

Description
Alternative computation based on neural systems on a nanoscale device are of increasing interest because of the massive parallelism and scalability they provide. Neural based computation systems also offer defect finding and self healing capabilities. Traditional Von Neumann based architectures (which separate the memory and computation units) inherently suffer from the Von Neumann bottleneck whereby the processor is limited by the number of instructions it fetches. The clock driven based Von Neumann computer survived because of technology scaling. However as transistor scaling is slowly coming to an end with channel lengths becoming a few nanometers in length, processor speeds are beginning to saturate. This lead to the development of multi-core systems which process data in parallel, with each core being based on the Von Neumann architecture.
The human brain has always been a mystery to scientists. Modern day super computers are outperformed by the human brain in certain computations. The brain occupies far less space and consumes a fraction of the power a super computer does with certain processes such as pattern recognition. Neuromorphic computing aims to mimic biological neural systems on silicon to exploit the massive parallelism that neural systems offer. Neuromorphic systems are event driven systems rather than being clock driven. One of the issues faced by neuromorphic computing was the area occupied by these circuits. With recent developments in the field of nanotechnology, memristive devices on a nanoscale have been developed and show a promising solution. Memristor based synapses can be up to three times smaller than Complementary Metal Oxide Semiconductor (CMOS) based synapses.
In this thesis, the Programmable Metallization Cell (a memristive device) is used to prove a learning algorithm known as Spike Time Dependant Plasticity (STDP). This learning algorithm is an extension to Hebb’s learning rule in which the synapses weight can be altered by the relative timing of spikes across it. The synaptic weight with the memristor will be its conductance, and CMOS oscillator based circuits will be used to produce spikes that can modulate the memristor conductance by firing with different phases differences.
The human brain has always been a mystery to scientists. Modern day super computers are outperformed by the human brain in certain computations. The brain occupies far less space and consumes a fraction of the power a super computer does with certain processes such as pattern recognition. Neuromorphic computing aims to mimic biological neural systems on silicon to exploit the massive parallelism that neural systems offer. Neuromorphic systems are event driven systems rather than being clock driven. One of the issues faced by neuromorphic computing was the area occupied by these circuits. With recent developments in the field of nanotechnology, memristive devices on a nanoscale have been developed and show a promising solution. Memristor based synapses can be up to three times smaller than Complementary Metal Oxide Semiconductor (CMOS) based synapses.
In this thesis, the Programmable Metallization Cell (a memristive device) is used to prove a learning algorithm known as Spike Time Dependant Plasticity (STDP). This learning algorithm is an extension to Hebb’s learning rule in which the synapses weight can be altered by the relative timing of spikes across it. The synaptic weight with the memristor will be its conductance, and CMOS oscillator based circuits will be used to produce spikes that can modulate the memristor conductance by firing with different phases differences.
ContributorsSivaraj, Mahraj (Author) / Barnaby, Hugh James (Thesis advisor) / Kozicki, Michael (Committee member) / Christen, Jennifer Blain (Committee member) / Arizona State University (Publisher)
Created2015

Description
A new loop configuration capable of reducing power radiation magnitudes lower than conventional loops has been developed. This configuration is demonstrated for the case of two coaxial loops of 0.1 meter radius coupled via the magnetic reactive field. Utilizing electromagnetism theory, techniques from antenna design and a new near field design initiative, the ability to design a magnetic field has been investigated by using a full wave simulation tool. The method for realization is initiated from first order physics model, ADS and onto a full wave situation tool for the case of a non-radiating helical loop. The exploration into the design of a magnetic near field while mitigating radiation power is demonstrated using an real number of twists to form a helical wire loop while biasing the integer twisted loop in a non-conventional moebius termination. The helix loop setup as a moebius loop convention can also be expressed as a shorted antenna scheme. The 0.1 meter radius helix antenna is biased with a 1MHz frequency that categorized the antenna loop as electrically small. It is then demonstrated that helical configuration reduces the electric field and mitigates power radiation into the far field. In order to compare the radiated power reduction performance of the helical loop a shielded loop is used as a baseline for comparison. The shielded loop system of the same geometric size and frequency is shown to have power radiation expressed as -46.1 dBm. The power radiated mitigation method of the helix loop reduces the power radiated from the two loop system down to -98.72 dBm.
ContributorsMoreno, Fernando (Author) / Diaz, Rodolfo (Thesis advisor) / Aberle, James T., 1961- (Committee member) / Kozicki, Michael (Committee member) / Arizona State University (Publisher)
Created2015

Description
Non-volatile memory (NVM) has become a staple in the everyday life of consumers. NVM manifests inside cell phones, laptops, and most recently, wearable tech such as smart watches. NAND Flash has been an excellent solution to conditions requiring fast, compact NVM. Current technology nodes are nearing the physical limits of scaling, preventing flash from improving. To combat the limitations of flash and to appease consumer demand for progressively faster and denser NVM, new technologies are needed. One possible candidate for the replacement of NAND Flash is programmable metallization cells (PMC). PMC are a type of resistive memory, meaning that they do not rely on charge storage to maintain a logic state. Depending on their application, it is possible that devices containing NVM will be exposed to harsh radiation environments. As part of the process for developing a novel memory technology, it is important to characterize the effects irradiation has on the functionality of the devices.
This thesis characterizes the effects that ionizing γ-ray irradiation has on the retention of the programmed resistive state of a PMC. The PMC devices tested used Ge30Se70 doped with Ag as the solid electrolyte layer and were fabricated by the thesis author in a Class 100 clean room. Individual device tiles were wire bonded into ceramic packages and tested in a biased and floating contact scenario.
The first scenario presented shows that PMC devices are capable of retaining their programmed state up to the maximum exposed total ionizing dose (TID) of 3.1 Mrad(Si). In this first scenario, the contacts of the PMC devices were left floating during exposure. The second scenario tested shows that the PMC devices are capable of retaining their state until the maximum TID of 10.1 Mrad(Si) was reached. The contacts in the second scenario were biased, with a 50 mV read voltage applied to the anode contact. Analysis of the results show that Ge30Se70 PMC are ionizing radiation tolerant and can retain a programmed state to a higher TID than NAND Flash memory.
This thesis characterizes the effects that ionizing γ-ray irradiation has on the retention of the programmed resistive state of a PMC. The PMC devices tested used Ge30Se70 doped with Ag as the solid electrolyte layer and were fabricated by the thesis author in a Class 100 clean room. Individual device tiles were wire bonded into ceramic packages and tested in a biased and floating contact scenario.
The first scenario presented shows that PMC devices are capable of retaining their programmed state up to the maximum exposed total ionizing dose (TID) of 3.1 Mrad(Si). In this first scenario, the contacts of the PMC devices were left floating during exposure. The second scenario tested shows that the PMC devices are capable of retaining their state until the maximum TID of 10.1 Mrad(Si) was reached. The contacts in the second scenario were biased, with a 50 mV read voltage applied to the anode contact. Analysis of the results show that Ge30Se70 PMC are ionizing radiation tolerant and can retain a programmed state to a higher TID than NAND Flash memory.
ContributorsTaggart, Jennifer Lynn (Author) / Barnaby, Hugh (Thesis advisor) / Kozicki, Michael (Committee member) / Holbert, Keith E. (Committee member) / Arizona State University (Publisher)
Created2015

Description
Microwave (MW), thermal, and ultraviolet (UV) annealing were used to explore the response of Ag structures on a Ge-Se chalcogenide glass (ChG) thin film as flexible radiation sensors, and Te-Ti chalcogenide thin films as a material for diffusion barriers in microelectronics devices and processing of metallized Cu. Flexible resistive radiation sensors consisting of Ag electrodes on a Ge20Se80 ChG thin film and polyethylene naphthalate substrate were exposed to UV radiation. The sensors were mounted on PVC tubes of varying radii to induce bending strains and annealed under ambient conditions up to 150 oC. Initial sensor resistance was measured to be ~1012 Ω; after exposure to UV radiation, the resistance was ~104 Ω. Bending strain and low temperature annealing had no significant effect on the resistance of the sensors. Samples of Cu on Te-Ti thin films were annealed in vacuum for up to 30 minutes and were stable up to 500 oC as revealed using Rutherford backscattering spectrometry (RBS) and four-point-probe analysis. X-ray diffractometry (XRD) indicates Cu grain growth up to 500 oC and phase instability of the Te-Ti barrier at 600 oC. MW processing was performed in a 2.45-GHz microwave cavity on Cu/Te-Ti films for up to 30 seconds to induce oxide growth. Using a calibrated pyrometer above the sample, the temperature of the MW process was measured to be below a maximum of 186 oC. Four-point-probe analysis shows an increase in resistance with an increase in MW time. XRD indicates growth of CuO on the sample surface. RBS suggests oxidation throughout the Te-Ti film. Additional samples were exposed to 907 J/cm2 UV radiation in order to ensure other possible electromagnetically induced mechanisms were not active. There were no changes observed using XRD, RBS or four point probing.
ContributorsRoos, Benjamin, 1990- (Author) / Alford, Terry L. (Thesis advisor) / Theodore, David (Committee member) / Kozicki, Michael (Committee member) / Arizona State University (Publisher)
Created2013

Description
There is a pervasive need in the defense industry for conformal, low-profile, efficient and broadband (HF-UHF) antennas. Broadband capabilities enable shared aperture multi-function radiators, while conformal antenna profiles minimize physical damage in army applications, reduce drag and weight penalties in airborne applications and reduce the visual and RF signatures of the communication node. This dissertation is concerned with a new class of antennas called Magneto-Dielectric wire antennas (MDWA) that provide an ideal solution to this ever-present and growing need. Magneto-dielectric structures (μr>1;εr>1) can partially guide electromagnetic waves and radiate them by leaking off the structure or by scattering from any discontinuities, much like a metal antenna of the same shape. They are attractive alternatives to conventional whip and blade antennas because they can be placed conformal to a metallic ground plane without any performance penalty. A two pronged approach is taken to analyze MDWAs. In the first, antenna circuit models are derived for the prototypical dipole and loop elements that include the effects of realistic dispersive magneto-dielectric materials of construction. A material selection law results, showing that: (a) The maximum attainable efficiency is determined by a single magnetic material parameter that we term the hesitivity: Closely related to Snoek's product, it measures the maximum magnetic conductivity of the material. (b) The maximum bandwidth is obtained by placing the highest amount of μ" loss in the frequency range of operation. As a result, high radiation efficiency antennas can be obtained not only from the conventional low loss (low μ") materials but also with highly lossy materials (tan(δm)>>1). The second approach used to analyze MDWAs is through solving the Green function problem of the infinite magneto-dielectric cylinder fed by a current loop. This solution sheds light on the leaky and guided waves supported by the magneto-dielectric structure and leads to useful design rules connecting the permeability of the material to the cross sectional area of the antenna in relation to the desired frequency of operation. The Green function problem of the permeable prolate spheroidal antenna is also solved as a good approximation to a finite cylinder.
ContributorsSebastian, Tom (Author) / Diaz, Rodolfo E (Thesis advisor) / Pan, George (Committee member) / Aberle, James T., 1961- (Committee member) / Kozicki, Michael (Committee member) / Arizona State University (Publisher)
Created2013

Description
The design and development of analog/mixed-signal (AMS) integrated circuits (ICs) is becoming increasingly expensive, complex, and lengthy. Rapid prototyping and emulation of analog ICs will be significant in the design and testing of complex analog systems. A new approach, Programmable ANalog Device Array (PANDA) that maps any AMS design problem to a transistor-level programmable hardware, is proposed. This approach enables fast system level validation and a reduction in post-Silicon bugs, minimizing design risk and cost. The unique features of the approach include 1) transistor-level programmability that emulates each transistor behavior in an analog design, achieving very fine granularity of reconfiguration; 2) programmable switches that are treated as a design component during analog transistor emulating, and optimized with the reconfiguration matrix; 3) compensation of AC performance degradation through boosting the bias current. Based on these principles, a digitally controlled PANDA platform is designed at 45nm node that can map AMS modules across 22nm to 90nm technology nodes. A systematic emulation approach to map any analog transistor to 45nm PANDA cell is proposed, which achieves transistor level matching accuracy of less than 5% for ID and less than 10% for Rout and Gm. Circuit level analog metrics of a voltage-controlled oscillator (VCO) emulated by PANDA, match to those of the original designs in 22nm and 90nm nodes with less than a 5% error. Several other 90nm and 22nm analog blocks are successfully emulated by the 45nm PANDA platform, including a folded-cascode operational amplifier and a sample-and-hold module (S/H). Further capabilities of PANDA are demonstrated by the first full-chip silicon of PANDA which is implemented on 65nm process This system consists of a 24×25 cell array, reconfigurable interconnect and configuration memory. The voltage and current reference circuits, op amps and a VCO with a phase interpolation circuit are emulated by PANDA.
ContributorsSuh, Jounghyuk (Author) / Bakkaloglu, Bertan (Thesis advisor) / Cao, Yu (Committee member) / Ozev, Sule (Committee member) / Kozicki, Michael (Committee member) / Arizona State University (Publisher)
Created2013

Description
High-Resistivity Silicon (HRS) substrates are important for low-loss, high-performance microwave and millimeter wave devices in high-frequency telecommunication systems. The highest resistivity of up to ~10,000 ohm.cm is Float Zone (FZ) grown Si which is produced in small quantities and moderate wafer diameter. The more common Czochralski (CZ) Si can achieve resistivities of around 1000 ohm.cm, but the wafers contain oxygen that can lead to thermal donor formation with donor concentration significantly higher (~1015 cm-3) than the dopant concentration (~1012-1013 cm-3) of such high-resistivity Si leading to resistivity changes and possible type conversion of high-resistivity p-type silicon. In this research capacitance-voltage (C-V) characterization is employed to study the donor formation and type conversion of p-type High-resistivity Silicon-On-Insulator (HRSOI) wafers and the challenges involved in C-V characterization of HRSOI wafers using a Schottky contact are highlighted. The maximum capacitance of bulk or Silicon-On-Insulator (SOI) wafers is governed by the gate/contact area. During C-V characterization of high-resistivity SOI wafers with aluminum contacts directly on the Si film (Schottky contact); it was observed that the maximum capacitance is much higher than that due to the contact area, suggesting bias spreading due to the distributed transmission line of the film resistance and the buried oxide capacitance. In addition, an "S"-shape C-V plot was observed in the accumulation region. The effects of various factors, such as: frequency, contact and substrate sizes, gate oxide, SOI film thickness, film and substrate doping, carrier lifetime, contact work-function, temperature, light, annealing temperature and radiation on the C-V characteristics of HRSOI wafers are studied. HRSOI wafers have the best crosstalk prevention capability compared to other types of wafers, which plays a major role in system-on-chip configuration to prevent coupling between high frequency digital and sensitive analog circuits. Substrate crosstalk in HRSOI and various factors affecting the crosstalk, such as: substrate resistivity, separation between devices, buried oxide (BOX) thickness, radiation, temperature, annealing, light, and device types are discussed. Also various ways to minimize substrate crosstalk are studied and a new characterization method is proposed. Owing to their very low doping concentrations and the presence of oxygen in CZ wafers, HRS wafers pose a challenge in resistivity measurement using conventional techniques such as four-point probe and Hall measurement methods. In this research the challenges in accurate resistivity measurement using four-point probe, Hall method, and C-V profile are highlighted and a novel approach to extract resistivity of HRS wafers based on Impedance Spectroscopy measurements using polymer dielectrics such as Polystyrene and Poly Methyl Methacrylate (PMMA) is proposed.
ContributorsNayak, Pinakpani (Author) / Schroder, Dieter K. (Thesis advisor) / Vasileska, Dragica (Committee member) / Kozicki, Michael (Committee member) / Aberle, James T., 1961- (Committee member) / Arizona State University (Publisher)
Created2012

Description
Power supply management is important for MEMS (Micro-Electro-Mechanical-Systems) bio-sensing and chemical sensing applications. The dissertation focuses on discussion of accessibility to different power sources and supply tuning in sensing applications. First, the dissertation presents a high efficiency DC-DC converter for a miniaturized Microbial Fuel Cell (MFC). The miniaturized MFC produces up to approximately 10µW with an output voltage of 0.4-0.7V. Such a low voltage, which is also load dependent, prevents the MFC to directly drive low power electronics. A PFM (Pulse Frequency Modulation) type DC-DC converter in DCM (Discontinuous Conduction Mode) is developed to address the challenges and provides a load independent output voltage with high conversion efficiency. The DC-DC converter, implemented in UMC 0.18µm technology, has been thoroughly characterized, coupled with the MFC. At 0.9V output, the converter has a peak efficiency of 85% with 9µW load, highest efficiency over prior publication. Energy could be harvested wirelessly and often has profound impacts on system performance. The dissertation reports a side-by-side comparison of two wireless and passive sensing systems: inductive and electromagnetic (EM) couplings for an application of in-situ and real-time monitoring of wafer cleanliness in semiconductor facilities. The wireless system, containing the MEMS sensor works with battery-free operations. Two wireless systems based on inductive and EM couplings have been implemented. The working distance of the inductive coupling system is limited by signal-to-noise-ratio (SNR) while that of the EM coupling is limited by the coupled power. The implemented on-wafer transponders achieve a working distance of 6 cm and 25 cm with a concentration resolution of less than 2% (4 ppb for a 200 ppb solution) for inductive and EM couplings, respectively. Finally, the supply tuning is presented in bio-sensing application to mitigate temperature sensitivity. The FBAR (film bulk acoustic resonator) based oscillator is an attractive method in label-free sensing application. Molecular interactions on FBAR surface induce mass change, which results in resonant frequency shift of FBAR. While FBAR has a high-Q to be sensitive to the molecular interactions, FBAR has finite temperature sensitivity. A temperature compensation technique is presented that improves the temperature coefficient of a 1.625 GHz FBAR-based oscillator from -118 ppm/K to less than 1 ppm/K by tuning the supply voltage of the oscillator. The tuning technique adds no additional component and has a large frequency tunability of -4305 ppm/V.
ContributorsZhang, Xu (Author) / Chae, Junseok (Thesis advisor) / Kiaei, Sayfe (Committee member) / Bakkaloglu, Bertan (Committee member) / Kozicki, Michael (Committee member) / Phillips, Stephen (Committee member) / Arizona State University (Publisher)
Created2012

Description
Nonvolatile memory (NVM) technologies have been an integral part of electronic systems for the past 30 years. The ideal non-volatile memory have minimal physical size, energy usage, and cost while having maximal speed, capacity, retention time, and radiation hardness. A promising candidate for next-generation memory is ion-conducting bridging RAM which is referred to as programmable metallization cell (PMC), conductive bridge RAM (CBRAM), or electrochemical metallization memory (ECM), which is likely to surpass flash memory in all the ideal memory characteristics. A comprehensive physics-based model is needed to completely understand PMC operation and assist in design optimization.
To advance the PMC modeling effort, this thesis presents a precise physical model parameterizing materials associated with both ion-rich and ion-poor layers of the PMC's solid electrolyte, so that captures the static electrical behavior of the PMC in both its low-resistance on-state (LRS) and high resistance off-state (HRS). The experimental data is measured from a chalcogenide glass PMC designed and manufactured at ASU. The static on- and off-state resistance of a PMC device composed of a layered (Ag-rich/Ag-poor) Ge30Se70 ChG film is characterized and modeled using three dimensional simulation code written in Silvaco Atlas finite element analysis software. Calibrating the model to experimental data enables the extraction of device parameters such as material bandgaps, workfunctions, density of states, carrier mobilities, dielectric constants, and affinities.
The sensitivity of our modeled PMC to the variation of its prominent achieved material parameters is examined on the HRS and LRS impedance behavior.
The obtained accurate set of material parameters for both Ag-rich and Ag-poor ChG systems and process variation verification on electrical characteristics enables greater fidelity in PMC device simulation, which significantly enhances our ability to understand the underlying physics of ChG-based resistive switching memory.
To advance the PMC modeling effort, this thesis presents a precise physical model parameterizing materials associated with both ion-rich and ion-poor layers of the PMC's solid electrolyte, so that captures the static electrical behavior of the PMC in both its low-resistance on-state (LRS) and high resistance off-state (HRS). The experimental data is measured from a chalcogenide glass PMC designed and manufactured at ASU. The static on- and off-state resistance of a PMC device composed of a layered (Ag-rich/Ag-poor) Ge30Se70 ChG film is characterized and modeled using three dimensional simulation code written in Silvaco Atlas finite element analysis software. Calibrating the model to experimental data enables the extraction of device parameters such as material bandgaps, workfunctions, density of states, carrier mobilities, dielectric constants, and affinities.
The sensitivity of our modeled PMC to the variation of its prominent achieved material parameters is examined on the HRS and LRS impedance behavior.
The obtained accurate set of material parameters for both Ag-rich and Ag-poor ChG systems and process variation verification on electrical characteristics enables greater fidelity in PMC device simulation, which significantly enhances our ability to understand the underlying physics of ChG-based resistive switching memory.
ContributorsRajabi, Saba (Author) / Barnaby, Hugh (Thesis advisor) / Kozicki, Michael (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2014