Matching Items (790)
Filtering by

Clear all filters

Description

Secure Scuttlebutt is a digital social network in which the network data is distributed among the users.<br/>This is done to secure several benefits, like offline browsing, censorship resistance, and to imitate natural social networks, but it comes with downsides, like the lack of an obvious implementation of a recommendation algorithm.<br/>This

Secure Scuttlebutt is a digital social network in which the network data is distributed among the users.<br/>This is done to secure several benefits, like offline browsing, censorship resistance, and to imitate natural social networks, but it comes with downsides, like the lack of an obvious implementation of a recommendation algorithm.<br/>This paper proposes Whuffie, an algorithm that tracks each user's reputation for having information that is interesting to a user using conditional probabilities.<br/>Some errors in the main Secure Scuttlebutt network prevent current large-scale testing of the usefulness of the algorithm, but testing on my own personal account led me to believe it a success.

ContributorsVermillion, Alexander J (Author) / Bazzi, Rida (Thesis director) / Richa, Andrea (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

My proposed project is an educational application that will seek to simplify the<br/>process of internalizing the chord symbols most commonly seen by those learning<br/>musical improvisation. The application will operate like a game, encouraging the<br/>user to identify chord tones within time limits and award points for successfully<br/>doing so.

ContributorsOwens, Kevin Bradyn (Author) / Balasooriya, Janaka (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Arizona State course enrollment regularly reaches triple digits. Despite the large enrollment numbers, the level of communication among students remain relatively low. Students often create Discord servers to keep in touch with classmates, but this requires each individual student to track down the invite link. The purpose of this project

Arizona State course enrollment regularly reaches triple digits. Despite the large enrollment numbers, the level of communication among students remain relatively low. Students often create Discord servers to keep in touch with classmates, but this requires each individual student to track down the invite link. The purpose of this project is to create an inviting chat service for students with minimal barriers of entry. This website, https://gibbl.io, offers a chat room for every class at ASU, making it simple for students to maintain communication.

Created2021-05
Description

This podcast discusses three nonconformists from throughout history and analyzes what made them successful, as well as how we can apply lessons learned from them to our own lives.

ContributorsSmalley, Zachary (Author) / Schmidt, Peter (Thesis director) / Foy, Joseph (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Compass portal features tools that help teachers, psychologists, behavioral specialists gain insights on students’ performance through activities they have completed.

ContributorsNallagula, Nithin Sagar (Co-author) / Shah, Neha (Co-author) / Gary, Kevin (Thesis director) / Mehlhase, Alexadnra (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

COMPASS portal features tools that help teachers, psychologists, behavioral Specialists gain insights on students’ performance through activities they have completed.

ContributorsShah, Neha Manish (Co-author) / Nallagula, Nithin Sagar (Co-author) / Gary, Kevin (Thesis director) / Mehlhase, Alexandra (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

In this paper, I introduce the fake news problem and detail how it has been exacerbated<br/>through social media. I explore current practices for fake news detection using natural language<br/>processing and current benchmarks in ranking the efficacy of various language models. Using a<br/>Twitter-specific benchmark, I attempt to reproduce the scores of

In this paper, I introduce the fake news problem and detail how it has been exacerbated<br/>through social media. I explore current practices for fake news detection using natural language<br/>processing and current benchmarks in ranking the efficacy of various language models. Using a<br/>Twitter-specific benchmark, I attempt to reproduce the scores of six language models<br/>demonstrating their effectiveness in seven tweet classification tasks. I explain the successes and<br/>challenges in reproducing these results and provide analysis for the future implications of fake<br/>news research.

ContributorsChang, Ariz Bay (Author) / Liu, Huan (Thesis director) / Tahir, Anique (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Artificial Intelligence is quickly growing to be an influential part of our daily lives. Due to this, we believe it is important to analyze how cultural perceptions can influence how we interact and develop technology. We decided to focus on India due to its large economic stature, cultural influence, and

Artificial Intelligence is quickly growing to be an influential part of our daily lives. Due to this, we believe it is important to analyze how cultural perceptions can influence how we interact and develop technology. We decided to focus on India due to its large economic stature, cultural influence, and influence on the technology industry.

ContributorsRaka, Khyati Pravin (Co-author) / Babbepalli Venkata, Sai Sandilya (Co-author) / Finn, Edward (Thesis director) / Banerjee, Ayan (Thesis director) / Fortunato, Joseph (Committee member) / Computer Science and Engineering Program (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Artificial Intelligence is quickly growing to be an influential part of our daily lives. Due to this, we believe it is important to analyze how cultural perceptions can influence how we interact and develop technology<br/>We decided to focus on India due to its large economic stature, cultural influence, and influence

Artificial Intelligence is quickly growing to be an influential part of our daily lives. Due to this, we believe it is important to analyze how cultural perceptions can influence how we interact and develop technology<br/>We decided to focus on India due to its large economic stature, cultural influence, and influence on the technology industry.

ContributorsBabbepalli Venkata, Sai Sandilya (Co-author) / Raka, Khyati (Co-author) / Banerjee, Ayan (Thesis director) / Finn, Edward (Thesis director) / Fortunato, Joseph (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Computer Science and Engineering Program (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Human activity recognition is the task of identifying a person’s movement from sensors in a wearable device, such as a smartphone, smartwatch, or a medical-grade device. A great method for this task is machine learning, which is the study of algorithms that learn and improve on their own with

Human activity recognition is the task of identifying a person’s movement from sensors in a wearable device, such as a smartphone, smartwatch, or a medical-grade device. A great method for this task is machine learning, which is the study of algorithms that learn and improve on their own with the help of massive amounts of useful data. These classification models can accurately classify activities with the time-series data from accelerometers and gyroscopes. A significant way to improve the accuracy of these machine learning models is preprocessing the data, essentially augmenting data to make the identification of each activity, or class, easier for the model. <br/>On this topic, this paper explains the design of SigNorm, a new web application which lets users conveniently transform time-series data and view the effects of those transformations in a code-free, browser-based user interface. The second and final section explains my take on a human activity recognition problem, which involves comparing a preprocessed dataset to an un-augmented one, and comparing the differences in accuracy using a one-dimensional convolutional neural network to make classifications.

ContributorsLi, Vincent (Author) / Turaga, Pavan (Thesis director) / Buman, Matthew (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05