Matching Items (790)
Filtering by

Clear all filters

Description

panCanSYGNAL is a web-application designed to allow cancer researchers to search the relationships between somatic mutations, regulators, and biclusters corresponding to many cancers using a Google-like searchable database.

ContributorsWatson, Jacob (Author) / Plaisier, Christopher (Thesis director) / Clough, Michael (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
Description
Oftentimes, patients struggle to accurately describe their symptoms to medical professionals, which produces erroneous diagnoses, delaying and preventing treatment. My app, Augnosis, will streamline constructive communication between patient and doctor, and allow for more accurate diagnoses. The goal of this project was to create an app capable of gathering data

Oftentimes, patients struggle to accurately describe their symptoms to medical professionals, which produces erroneous diagnoses, delaying and preventing treatment. My app, Augnosis, will streamline constructive communication between patient and doctor, and allow for more accurate diagnoses. The goal of this project was to create an app capable of gathering data on visual symptoms of facial acne and categorizing it to differentiate between diagnoses using image recognition and identification. “Augnosis”, is a combination of the words “Augmented Reality” and “Self-Diagnosis”, the former being the medium in which it is immersed and the latter detailing its functionality.
ContributorsGoyal, Nandika (Author) / Johnson, Mina (Thesis director) / Bryan, Chris (Committee member) / Turaga, Pavan (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
Description
The purpose of this research is to better understand the potential use environment of a Dendritic Identifier within the current leafy green supply chain, including the exploration of potential costs of implementation as well as non-economic costs. This information was collected through an extensive review of literature and through the

The purpose of this research is to better understand the potential use environment of a Dendritic Identifier within the current leafy green supply chain, including the exploration of potential costs of implementation as well as non-economic costs. This information was collected through an extensive review of literature and through the engagement in in-depth interviews with professionals that work in the growing, distribution, and processing of leafy greens. Food safety in the leafy green industry is growing in importance in the wake of costly outbreaks that resulted and recalls and lasting market damage. The Dendritic Identifier provides a unique identification tag that is unclonable, scannable, and compatible with blockchain systems. It is a digital trigger that can be implemented throughout the commercial leafy green supply chain to increase visibility from farm to fork for the consumer and a traceability system for government agencies to trace outbreaks. Efforts like the Food Safety Modernization Act, the Leafy Green Marketing Agreement, and other certifications aim at establishing science-based standards regarding soil testing, water, animal feces, imports, and more. The leafy green supply chains are fragmented in terms of tagging methods and data management services used. There are obstacles in implementing Dendritic Identifiers in that all parties must have systems capable of joining blockchain networks. While there is still a lot to take into consideration for implementation, solutions like the IBM Food Trust pose options for a more fluid transfer of information. Dendritic Identifiers beat out competing tagging technologies in that they work with cellphones, are low cost, and are blockchain compatible. Growers and processors are excited by the opportunity to showcase their extensive food safety measures. The next step in understanding the use environment is to focus on the retail distribution and the retailer specifically.
ContributorsMin, Eleanor (Author) / Manfredo, Mark (Thesis director) / Kozicki, Michael (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor) / Department of Supply Chain Management (Contributor)
Created2022-05
Description

The purpose of this thesis is to accurately simulate in 3D the HH901 jet in the Mystic Mountain Formation of the Carina Nebula. Astronomers present a narrow-band Wide Field Camera image of Carina and the morphology of some astrophysical jets, including HH901. The simulation attempts to replicate features of the

The purpose of this thesis is to accurately simulate in 3D the HH901 jet in the Mystic Mountain Formation of the Carina Nebula. Astronomers present a narrow-band Wide Field Camera image of Carina and the morphology of some astrophysical jets, including HH901. The simulation attempts to replicate features of the jet, among which are pulses, bow shock, terminal Mach disk, and Kelvin-Helmholtz rollup. We use the gas dynamical equations to solve for density, velocity, and temperature. The numerical methods used to solve the equations are third-order WENO (weighted essentially non-oscillatory) and third-order Runge-Kutta. Graphs of density and radiative cooling demonstrate the effect of adding wind (nonzero ambient velocity). The paper discusses the altering of the ambient velocity and final time to fit the shape of the jet in the Hubble image. The suggested next steps are simulating the other HH901 jet and comparing the jets’ atomic makeups to advance understanding of astrophysical jets.

ContributorsBuyer, Michael (Author) / Gardner, Carl (Thesis director) / Jones, Jeremiah (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05
Description

Applying a classical theorem due to Macbeath applied to a suitably sized horoball, we calculate novel group presentations for singly-cusped Bianchi groups. We find new presentations for Bianchi groups with d = -43, -67, -163. With previously known presentations for d = -1, -2, -3, -7, -11, -19, this constitutes

Applying a classical theorem due to Macbeath applied to a suitably sized horoball, we calculate novel group presentations for singly-cusped Bianchi groups. We find new presentations for Bianchi groups with d = -43, -67, -163. With previously known presentations for d = -1, -2, -3, -7, -11, -19, this constitutes a complete set of presentations for singly-cusped Bianchi groups.

ContributorsReese, Tanner (Author) / Paupert, Julien (Thesis director) / Childress, Nancy (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
Description

This paper addresses echo chambers, an online phenomena wherein social media users can "only hear their own voice". In this paper I will examine the history and recent proliferation of online echo chambers. I will outline a comprehensive theory of echo chamber generation and maintenance, intended for educational value. I

This paper addresses echo chambers, an online phenomena wherein social media users can "only hear their own voice". In this paper I will examine the history and recent proliferation of online echo chambers. I will outline a comprehensive theory of echo chamber generation and maintenance, intended for educational value. I then conduct my own experiment based on previous echo chamber detection work.

ContributorsFinnegan, Colin (Author) / Liu, Huan (Thesis director) / Alatawi, Faisal (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
Description

Molecular pathology makes use of estimates of tumor content (tumor percentage) for pre-analytic and analytic purposes, such as molecular oncology testing, massive parallel sequencing, or next-generation sequencing (NGS), assessment of sample acceptability, accurate quantitation of variants, assessment of copy number changes (among other applications), determination of specimen viability for testing

Molecular pathology makes use of estimates of tumor content (tumor percentage) for pre-analytic and analytic purposes, such as molecular oncology testing, massive parallel sequencing, or next-generation sequencing (NGS), assessment of sample acceptability, accurate quantitation of variants, assessment of copy number changes (among other applications), determination of specimen viability for testing (since many assays require a minimum tumor content to report variants at the limit of detection) may all be improved with more accurate and reproducible estimates of tumor content. Currently, tumor percentages of samples submitted for molecular testing are estimated by visual examination of Hematoxylin and Eosin (H&E) stained tissue slides under the microscope by pathologists. These estimations can be automated, expedited, and rendered more accurate by applying machine learning methods on digital whole slide images (WSI).

ContributorsCirelli, Claire (Author) / Yang, Yezhou (Thesis director) / Yalim, Jason (Committee member) / Velu, Priya (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
Description
Many real-world problems rely on the collaboration of multiple agents. Making plans for these multiple agents such that the goal state can be achieved becomes more and more difficult as the number of objects to consider increases. The increase in the number of objects results in the exponential increase in

Many real-world problems rely on the collaboration of multiple agents. Making plans for these multiple agents such that the goal state can be achieved becomes more and more difficult as the number of objects to consider increases. The increase in the number of objects results in the exponential increase in time and space required to find a viable plan. By mapping each agent onto some team, creating an abstract plan, and applying the abstract plan to the concrete problem, we can produce plans that reach the goal state more quickly than by solving them directly. This is demonstrated by applying this method to multiple problems in a custom domain dubbed the “garden” domain.
ContributorsAtkinson, Kyle (Author) / Srivastava, Siddharth (Thesis director) / Shah, Naman (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
Description

Find My College is an app to help people who are interested in pursuing a collegiate degree; find a college/s that is right for them. This app is designed using the Ionic Framework, to allow access across all operating systems such as Android and MacOS. We wanted to create an

Find My College is an app to help people who are interested in pursuing a collegiate degree; find a college/s that is right for them. This app is designed using the Ionic Framework, to allow access across all operating systems such as Android and MacOS. We wanted to create an app that people using Android or Apple can use, and this framework allows us to do that. The app is very user friendly and straightforward, which makes it usable to all types of people. It will be a free to use app that can be improved and adjusted if changes are needed/wanted.

ContributorsVadlamudi, Srisushanth (Author) / Solis, Jalen (Co-author) / Miller, Phillip (Thesis director) / De Luca, Gennaro (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Natural Sciences (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
Description

Find My College is an app to help people who are interested in pursuing a collegiate degree; find a college/s that is right for them. This app is designed using the Ionic Framework, to allow access across all operating systems such as Android and MacOS. We wanted to create an

Find My College is an app to help people who are interested in pursuing a collegiate degree; find a college/s that is right for them. This app is designed using the Ionic Framework, to allow access across all operating systems such as Android and MacOS. We wanted to create an app that people using Android or Apple can use, and this framework allows us to do that. The app is very user friendly and straightforward, which makes it usable to all types of people. It will be a free to use app that can be improved and adjusted if changes are needed/wanted.

ContributorsSolis, Jalen (Author) / Vadlamudi, Sai (Co-author) / Miller, Phillip (Thesis director) / De Luca, Gennaro (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05