Matching Items (30)
Filtering by
- Member of: ASU Electronic Theses and Dissertations

Description
Most embedded applications are constructed with multiple threads to handle concurrent events. For optimization and debugging of the programs, dynamic program analysis is widely used to collect execution information while the program is running. Unfortunately, the non-deterministic behavior of multithreaded embedded software makes the dynamic analysis difficult. In addition, instrumentation overhead for gathering execution information may change the execution of a program, and lead to distorted analysis results, i.e., probe effect. This thesis presents a framework that tackles the non-determinism and probe effect incurred in dynamic analysis of embedded software. The thesis largely consists of three parts. First of all, we discusses a deterministic replay framework to provide reproducible execution. Once a program execution is recorded, software instrumentation can be safely applied during replay without probe effect. Second, a discussion of probe effect is presented and a simulation-based analysis is proposed to detect execution changes of a program caused by instrumentation overhead. The simulation-based analysis examines if the recording instrumentation changes the original program execution. Lastly, the thesis discusses data race detection algorithms that help to remove data races for correctness of the replay and the simulation-based analysis. The focus is to make the detection efficient for C/C++ programs, and to increase scalability of the detection on multi-core machines.
ContributorsSong, Young Wn (Author) / Lee, Yann-Hang (Thesis advisor) / Shrivastava, Aviral (Committee member) / Fainekos, Georgios (Committee member) / Lee, Joohyung (Committee member) / Arizona State University (Publisher)
Created2015

Description
Cisco estimates that by 2020, 50 billion devices will be connected to the Internet. But 99% of the things today remain isolated and unconnected. Different connectivity protocols, proprietary access, varied device characteristics, security concerns are the main reasons for that isolated state. This project aims at designing and building a prototype gateway that exposes a simple and intuitive HTTP Restful interface to access and manipulate devices and the data that they produce while addressing most of the issues listed above. Along with manipulating devices, the framework exposes sensor data in such a way that it can be used to create applications like rules or events that make the home smarter. It also allows the user to represent high-level knowledge by aggregating the low-level sensor data. This high-level representation can be considered as a property of the environment or object rather than the sensor itself which makes interpreting the values more intuitive and accessible.
ContributorsNair, Shankar (Author) / Lee, Yann-Hang (Thesis advisor) / Lee, Joohyung (Committee member) / Fainekos, Georgios (Committee member) / Arizona State University (Publisher)
Created2015

Description
Question Answering has been under active research for decades, but it has recently taken the spotlight following IBM Watson's success in Jeopardy! and digital assistants such as Apple's Siri, Google Now, and Microsoft Cortana through every smart-phone and browser. However, most of the research in Question Answering aims at factual questions rather than deep ones such as ``How'' and ``Why'' questions.
In this dissertation, I suggest a different approach in tackling this problem. We believe that the answers of deep questions need to be formally defined before found.
Because these answers must be defined based on something, it is better to be more structural in natural language text; I define Knowledge Description Graphs (KDGs), a graphical structure containing information about events, entities, and classes. We then propose formulations and algorithms to construct KDGs from a frame-based knowledge base, define the answers of various ``How'' and ``Why'' questions with respect to KDGs, and suggest how to obtain the answers from KDGs using Answer Set Programming. Moreover, I discuss how to derive missing information in constructing KDGs when the knowledge base is under-specified and how to answer many factual question types with respect to the knowledge base.
After having the answers of various questions with respect to a knowledge base, I extend our research to use natural language text in specifying deep questions and knowledge base, generate natural language text from those specification. Toward these goals, I developed NL2KR, a system which helps in translating natural language to formal language. I show NL2KR's use in translating ``How'' and ``Why'' questions, and generating simple natural language sentences from natural language KDG specification. Finally, I discuss applications of the components I developed in Natural Language Understanding.
In this dissertation, I suggest a different approach in tackling this problem. We believe that the answers of deep questions need to be formally defined before found.
Because these answers must be defined based on something, it is better to be more structural in natural language text; I define Knowledge Description Graphs (KDGs), a graphical structure containing information about events, entities, and classes. We then propose formulations and algorithms to construct KDGs from a frame-based knowledge base, define the answers of various ``How'' and ``Why'' questions with respect to KDGs, and suggest how to obtain the answers from KDGs using Answer Set Programming. Moreover, I discuss how to derive missing information in constructing KDGs when the knowledge base is under-specified and how to answer many factual question types with respect to the knowledge base.
After having the answers of various questions with respect to a knowledge base, I extend our research to use natural language text in specifying deep questions and knowledge base, generate natural language text from those specification. Toward these goals, I developed NL2KR, a system which helps in translating natural language to formal language. I show NL2KR's use in translating ``How'' and ``Why'' questions, and generating simple natural language sentences from natural language KDG specification. Finally, I discuss applications of the components I developed in Natural Language Understanding.
ContributorsVo, Nguyen Ha (Author) / Baral, Chitta (Thesis advisor) / Lee, Joohyung (Committee member) / VanLehn, Kurt (Committee member) / Tran, Son Cao (Committee member) / Arizona State University (Publisher)
Created2015

Description
With the growth of IT products and sophisticated software in various operating systems, I observe that security risks in systems are skyrocketing constantly. Consequently, Security Assessment is now considered as one of primary security mechanisms to measure assurance of systems since systems that are not compliant with security requirements may lead adversaries to access critical information by circumventing security practices. In order to ensure security, considerable efforts have been spent to develop security regulations by facilitating security best-practices. Applying shared security standards to the system is critical to understand vulnerabilities and prevent well-known threats from exploiting vulnerabilities. However, many end users tend to change configurations of their systems without paying attention to the security. Hence, it is not straightforward to protect systems from being changed by unconscious users in a timely manner. Detecting the installation of harmful applications is not sufficient since attackers may exploit risky software as well as commonly used software. In addition, checking the assurance of security configurations periodically is disadvantageous in terms of time and cost due to zero-day attacks and the timing attacks that can leverage the window between each security checks. Therefore, event-driven monitoring approach is critical to continuously assess security of a target system without ignoring a particular window between security checks and lessen the burden of exhausted task to inspect the entire configurations in the system. Furthermore, the system should be able to generate a vulnerability report for any change initiated by a user if such changes refer to the requirements in the standards and turn out to be vulnerable. Assessing various systems in distributed environments also requires to consistently applying standards to each environment. Such a uniformed consistent assessment is important because the way of assessment approach for detecting security vulnerabilities may vary across applications and operating systems. In this thesis, I introduce an automated event-driven security assessment framework to overcome and accommodate the aforementioned issues. I also discuss the implementation details that are based on the commercial-off-the-self technologies and testbed being established to evaluate approach. Besides, I describe evaluation results that demonstrate the effectiveness and practicality of the approaches.
ContributorsSeo, Jeong-Jin (Author) / Ahn, Gail-Joon (Thesis advisor) / Yau, Stephen S. (Committee member) / Lee, Joohyung (Committee member) / Arizona State University (Publisher)
Created2014

Description
Biological organisms are made up of cells containing numerous interconnected biochemical processes. Diseases occur when normal functionality of these processes is disrupted, manifesting as disease symptoms. Thus, understanding these biochemical processes and their interrelationships is a primary task in biomedical research and a prerequisite for activities including diagnosing diseases and drug development. Scientists studying these interconnected processes have identified various pathways involved in drug metabolism, diseases, and signal transduction, etc. High-throughput technologies, new algorithms and speed improvements over the last decade have resulted in deeper knowledge about biological systems, leading to more refined pathways. Such pathways tend to be large and complex, making it difficult for an individual to remember all aspects. Thus, computer models are needed to represent and analyze them. The refinement activity itself requires reasoning with a pathway model by posing queries against it and comparing the results against the real biological system. Many existing models focus on structural and/or factoid questions, relying on surface-level information. These are generally not the kind of questions that a biologist may ask someone to test their understanding of biological processes. Examples of questions requiring understanding of biological processes are available in introductory college level biology text books. Such questions serve as a model for the question answering system developed in this thesis. Thus, the main goal of this thesis is to develop a system that allows the encoding of knowledge about biological pathways to answer questions demonstrating understanding of the pathways. To that end, a language is developed to specify a pathway and pose questions against it. Some existing tools are modified and used to accomplish this goal. The utility of the framework developed in this thesis is illustrated with applications in the biological domain. Finally, the question answering system is used in real world applications by extracting pathway knowledge from text and answering questions related to drug development.
ContributorsAnwar, Saadat (Author) / Baral, Chitta (Thesis advisor) / Inoue, Katsumi (Committee member) / Chen, Yi (Committee member) / Davulcu, Hasan (Committee member) / Lee, Joohyung (Committee member) / Arizona State University (Publisher)
Created2014

Description
Modeling dynamic systems is an interesting problem in Knowledge Representation (KR) due to their usefulness in reasoning about real-world environments. In order to effectively do this, a number of different formalisms have been considered ranging from low-level languages, such as Answer Set Programming (ASP), to high-level action languages, such as C+ and BC. These languages show a lot of promise over many traditional approaches as they allow a developer to automate many tasks which require reasoning within dynamic environments in a succinct and elaboration tolerant manner. However, despite their strengths, they are still insufficient for modeling many systems, especially those of non-trivial scale or that require the ability to cope with exceptions which occur during execution, such as unexpected events or unintended consequences to actions which have been performed. In order to address these challenges, a theoretical framework is created which focuses on improving the feasibility of applying KR techniques to such problems. The framework is centered on the action language BC+, which integrates many of the strengths of existing KR formalisms, and provides the ability to perform efficient reasoning in an incremental fashion while handling exceptions which occur during execution. The result is a developer friendly formalism suitable for performing reasoning in an online environment. Finally, the newly enhanced Cplus2ASP 2 is introduced, which provides a number of improvements over the original version. These improvements include implementing BC+ among several additional languages, providing enhanced developer support, and exhibiting a significant performance increase over its predecessors and similar systems.
ContributorsBabb, Joseph (Author) / Lee, Joohyung (Thesis advisor) / Lee, Yann-Hang (Committee member) / Baral, Chitta (Committee member) / Arizona State University (Publisher)
Created2014

Description
While developing autonomous intelligent robots has been the goal of many research programs, a more practical application involving intelligent robots is the formation of teams consisting of both humans and robots. An example of such an application is search and rescue operations where robots commanded by humans are sent to environments too dangerous for humans. For such human-robot interaction, natural language is considered a good communication medium as it allows humans with less training about the robot's internal language to be able to command and interact with the robot. However, any natural language communication from the human needs to be translated to a formal language that the robot can understand. Similarly, before the robot can communicate (in natural language) with the human, it needs to formulate its communique in some formal language which then gets translated into natural language. In this paper, I develop a high level language for communication between humans and robots and demonstrate various aspects through a robotics simulation. These language constructs borrow some ideas from action execution languages and are grounded with respect to simulated human-robot interaction transcripts.
ContributorsLumpkin, Barry Thomas (Author) / Baral, Chitta (Thesis advisor) / Lee, Joohyung (Committee member) / Fainekos, Georgios (Committee member) / Arizona State University (Publisher)
Created2012

Description
Turing test has been a benchmark scale for measuring the human level intelligence in computers since it was proposed by Alan Turing in 1950. However, for last 60 years, the applications such as ELIZA, PARRY, Cleverbot and Eugene Goostman, that claimed to pass the test. These applications are either based on tricks to fool humans on a textual chat based test or there has been a disagreement between AI communities on them passing the test. This has led to the school of thought that it might not be the ideal test for predicting the human level intelligence in machines.
Consequently, the Winograd Schema Challenge has been suggested as an alternative to the Turing test. As opposed to deciding the intelligent behavior with the help of chat servers, like it was done in the Turing test, the Winograd Schema Challenge is a question answering test. It consists of sentence and question pairs such that the answer to the question depends on the resolution of a definite pronoun or adjective in the sentence. The answers are fairly intuitive for humans but they are difficult for machines because it requires some sort of background or commonsense knowledge about the sentence.
In this thesis, I propose a novel technique to solve the Winograd Schema Challenge. The technique has three basic modules at its disposal, namely, a Semantic Parser that parses the English text (both sentences and questions) into a formal representation, an Automatic Background Knowledge Extractor that extracts the Background Knowledge pertaining to the given Winograd sentence, and an Answer Set Programming Reasoning Engine that reasons on the given Winograd sentence and the corresponding Background Knowledge. The applicability of the technique is illustrated by solving a subset of Winograd Schema Challenge pertaining to a certain type of Background Knowledge. The technique is evaluated on the subset and a notable accuracy is achieved.
Consequently, the Winograd Schema Challenge has been suggested as an alternative to the Turing test. As opposed to deciding the intelligent behavior with the help of chat servers, like it was done in the Turing test, the Winograd Schema Challenge is a question answering test. It consists of sentence and question pairs such that the answer to the question depends on the resolution of a definite pronoun or adjective in the sentence. The answers are fairly intuitive for humans but they are difficult for machines because it requires some sort of background or commonsense knowledge about the sentence.
In this thesis, I propose a novel technique to solve the Winograd Schema Challenge. The technique has three basic modules at its disposal, namely, a Semantic Parser that parses the English text (both sentences and questions) into a formal representation, an Automatic Background Knowledge Extractor that extracts the Background Knowledge pertaining to the given Winograd sentence, and an Answer Set Programming Reasoning Engine that reasons on the given Winograd sentence and the corresponding Background Knowledge. The applicability of the technique is illustrated by solving a subset of Winograd Schema Challenge pertaining to a certain type of Background Knowledge. The technique is evaluated on the subset and a notable accuracy is achieved.
ContributorsSharma, Arpita (Author) / Baral, Chita (Thesis advisor) / Lee, Joohyung (Committee member) / Pon-Barry, Heather (Committee member) / Arizona State University (Publisher)
Created2014

Description
Current work in planning assumes that user preferences and/or domain dynamics are completely specified in advance, and aims to search for a single solution plan to satisfy these. In many real world scenarios, however, providing a complete specification of user preferences and domain dynamics becomes a time-consuming and error-prone task. More often than not, a user may provide no knowledge or at best partial knowledge of her preferences with respect to a desired plan. Similarly, a domain writer may only be able to determine certain parts, not all, of the model of some actions in a domain. Such modeling issues requires new concepts on what a solution should be, and novel techniques in solving the problem. When user preferences are incomplete, rather than presenting a single plan, the planner must instead provide a set of plans containing one or more plans that are similar to the one that the user prefers. This research first proposes the usage of different measures to capture the quality of such plan sets. These are domain-independent distance measures based on plan elements if no knowledge of the user preferences is given, or the Integrated Preference Function measure in case incomplete knowledge of such preferences is provided. It then investigates various heuristic approaches to generate plan sets in accordance with these measures, and presents empirical results demonstrating the promise of the methods. The second part of this research addresses planning problems with incomplete domain models, specifically those annotated with possible preconditions and effects of actions. It formalizes the notion of plan robustness capturing the probability of success for plans during execution. A method of assessing plan robustness based on the weighted model counting approach is proposed. Two approaches for synthesizing robust plans are introduced. The first one compiles the robust plan synthesis problems to the conformant probabilistic planning problems. The second approximates the robustness measure with lower and upper bounds, incorporating them into a stochastic local search for estimating distance heuristic to a goal state. The resulting planner outperforms a state-of-the-art planner that can handle incomplete domain models in both plan quality and planning time.
ContributorsNguyễn, Tuấn Anh (Author) / Kambhampati, Subbarao (Thesis advisor) / Baral, Chitta (Committee member) / Do, Minh (Committee member) / Lee, Joohyung (Committee member) / Smith, David E. (Committee member) / Arizona State University (Publisher)
Created2014

Description
Answer Set Programming (ASP) is one of the most prominent and successful knowledge representation paradigms. The success of ASP is due to its expressive non-monotonic modeling language and its efficient computational methods originating from building propositional satisfiability solvers. The wide adoption of ASP has motivated several extensions to its modeling language in order to enhance expressivity, such as incorporating aggregates and interfaces with ontologies. Also, in order to overcome the grounding bottleneck of computation in ASP, there are increasing interests in integrating ASP with other computing paradigms, such as Constraint Programming (CP) and Satisfiability Modulo Theories (SMT). Due to the non-monotonic nature of the ASP semantics, such enhancements turned out to be non-trivial and the existing extensions are not fully satisfactory. We observe that one main reason for the difficulties rooted in the propositional semantics of ASP, which is limited in handling first-order constructs (such as aggregates and ontologies) and functions (such as constraint variables in CP and SMT) in natural ways. This dissertation presents a unifying view on these extensions by viewing them as instances of formulas with generalized quantifiers and intensional functions. We extend the first-order stable model semantics by by Ferraris, Lee, and Lifschitz to allow generalized quantifiers, which cover aggregate, DL-atoms, constraints and SMT theory atoms as special cases. Using this unifying framework, we study and relate different extensions of ASP. We also present a tight integration of ASP with SMT, based on which we enhance action language C+ to handle reasoning about continuous changes. Our framework yields a systematic approach to study and extend non-monotonic languages.
ContributorsMeng, Yunsong (Author) / Lee, Joohyung (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Baral, Chitta (Committee member) / Fainekos, Georgios (Committee member) / Lifschitz, Vladimir (Committee member) / Arizona State University (Publisher)
Created2013