Matching Items (721)
Filtering by

Clear all filters

Description

Arizona State course enrollment regularly reaches triple digits. Despite the large enrollment numbers, the level of communication among students remain relatively low. Students often create Discord servers to keep in touch with classmates, but this requires each individual student to track down the invite link. The purpose of this project

Arizona State course enrollment regularly reaches triple digits. Despite the large enrollment numbers, the level of communication among students remain relatively low. Students often create Discord servers to keep in touch with classmates, but this requires each individual student to track down the invite link. The purpose of this project is to create an inviting chat service for students with minimal barriers of entry. This website, https://gibbl.io, offers a chat room for every class at ASU, making it simple for students to maintain communication.

Created2021-05
Description

This podcast discusses three nonconformists from throughout history and analyzes what made them successful, as well as how we can apply lessons learned from them to our own lives.

ContributorsSmalley, Zachary (Author) / Schmidt, Peter (Thesis director) / Foy, Joseph (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Compass portal features tools that help teachers, psychologists, behavioral specialists gain insights on students’ performance through activities they have completed.

ContributorsNallagula, Nithin Sagar (Co-author) / Shah, Neha (Co-author) / Gary, Kevin (Thesis director) / Mehlhase, Alexadnra (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

COMPASS portal features tools that help teachers, psychologists, behavioral Specialists gain insights on students’ performance through activities they have completed.

ContributorsShah, Neha Manish (Co-author) / Nallagula, Nithin Sagar (Co-author) / Gary, Kevin (Thesis director) / Mehlhase, Alexandra (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

In this paper, I introduce the fake news problem and detail how it has been exacerbated<br/>through social media. I explore current practices for fake news detection using natural language<br/>processing and current benchmarks in ranking the efficacy of various language models. Using a<br/>Twitter-specific benchmark, I attempt to reproduce the scores of

In this paper, I introduce the fake news problem and detail how it has been exacerbated<br/>through social media. I explore current practices for fake news detection using natural language<br/>processing and current benchmarks in ranking the efficacy of various language models. Using a<br/>Twitter-specific benchmark, I attempt to reproduce the scores of six language models<br/>demonstrating their effectiveness in seven tweet classification tasks. I explain the successes and<br/>challenges in reproducing these results and provide analysis for the future implications of fake<br/>news research.

ContributorsChang, Ariz Bay (Author) / Liu, Huan (Thesis director) / Tahir, Anique (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Artificial Intelligence is quickly growing to be an influential part of our daily lives. Due to this, we believe it is important to analyze how cultural perceptions can influence how we interact and develop technology. We decided to focus on India due to its large economic stature, cultural influence, and

Artificial Intelligence is quickly growing to be an influential part of our daily lives. Due to this, we believe it is important to analyze how cultural perceptions can influence how we interact and develop technology. We decided to focus on India due to its large economic stature, cultural influence, and influence on the technology industry.

ContributorsRaka, Khyati Pravin (Co-author) / Babbepalli Venkata, Sai Sandilya (Co-author) / Finn, Edward (Thesis director) / Banerjee, Ayan (Thesis director) / Fortunato, Joseph (Committee member) / Computer Science and Engineering Program (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Artificial Intelligence is quickly growing to be an influential part of our daily lives. Due to this, we believe it is important to analyze how cultural perceptions can influence how we interact and develop technology<br/>We decided to focus on India due to its large economic stature, cultural influence, and influence

Artificial Intelligence is quickly growing to be an influential part of our daily lives. Due to this, we believe it is important to analyze how cultural perceptions can influence how we interact and develop technology<br/>We decided to focus on India due to its large economic stature, cultural influence, and influence on the technology industry.

ContributorsBabbepalli Venkata, Sai Sandilya (Co-author) / Raka, Khyati (Co-author) / Banerjee, Ayan (Thesis director) / Finn, Edward (Thesis director) / Fortunato, Joseph (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Computer Science and Engineering Program (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Human activity recognition is the task of identifying a person’s movement from sensors in a wearable device, such as a smartphone, smartwatch, or a medical-grade device. A great method for this task is machine learning, which is the study of algorithms that learn and improve on their own with

Human activity recognition is the task of identifying a person’s movement from sensors in a wearable device, such as a smartphone, smartwatch, or a medical-grade device. A great method for this task is machine learning, which is the study of algorithms that learn and improve on their own with the help of massive amounts of useful data. These classification models can accurately classify activities with the time-series data from accelerometers and gyroscopes. A significant way to improve the accuracy of these machine learning models is preprocessing the data, essentially augmenting data to make the identification of each activity, or class, easier for the model. <br/>On this topic, this paper explains the design of SigNorm, a new web application which lets users conveniently transform time-series data and view the effects of those transformations in a code-free, browser-based user interface. The second and final section explains my take on a human activity recognition problem, which involves comparing a preprocessed dataset to an un-augmented one, and comparing the differences in accuracy using a one-dimensional convolutional neural network to make classifications.

ContributorsLi, Vincent (Author) / Turaga, Pavan (Thesis director) / Buman, Matthew (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
This project aspires to develop an AI capable of playing on a variety of maps in a Risk-like board game. While AI has been successfully applied to many other board games, such as Chess and Go, most research is confined to a single board and is inflexible to topological changes.

This project aspires to develop an AI capable of playing on a variety of maps in a Risk-like board game. While AI has been successfully applied to many other board games, such as Chess and Go, most research is confined to a single board and is inflexible to topological changes. Further, almost all of these games are played on a rectangular grid. Contrarily, this project develops an AI player, referred to as GG-net, to play the online strategy game Warzone, which is based on the classic board game Risk. Warzone is played on a wide variety of irregularly shaped maps. Prior research has struggled to create an effective AI for Risk-like games due to the immense branching factor. The most successful attempts tended to rely on manually restricting the set of actions the AI considered while also engineering useful features for the AI to consider. GG-net uses no human knowledge, but rather a genetic algorithm combined with a graph neural network. Together, these methods allow GG-net to perform competitively across a multitude of maps. GG-net outperformed the built-in rule-based AI by 413 Elo (representing an 80.7% chance of winning) and an approach based on AlphaZero using graph neural networks by 304 Elo (representing a 74.2% chance of winning). This same advantage holds across both seen and unseen maps. GG-net appears to be a strong opponent on both small and medium maps, however, on large maps with hundreds of territories, inefficiencies in GG-net become more significant and GG-net struggles against the rule-based approach. Overall, GG-net was able to successfully learn the game and generalize across maps of a similar size, albeit further work is required for GG-net to become more successful on large maps.
ContributorsBauer, Andrew (Author) / Yang, Yezhou (Thesis director) / Harrison, Blake (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05
Description
Wardriving is when prospective malicious hackers drive with a portable computer to sniff out and map potentially vulnerable networks. With the advent of smart homes and other Internet of Things devices, this poses the possibility of more unsecure targets. The hardware available to the public has also miniaturized and gotten

Wardriving is when prospective malicious hackers drive with a portable computer to sniff out and map potentially vulnerable networks. With the advent of smart homes and other Internet of Things devices, this poses the possibility of more unsecure targets. The hardware available to the public has also miniaturized and gotten more powerful. One no longer needs to carry a complete laptop to carry out network mapping. With this miniaturization and greater popularity of quadcopter technology, the two can be combined to create a more efficient wardriving setup in a potentially more target-rich environment. Thus, we set out to create a prototype as a proof of concept of this combination. By creating a bracket for a Raspberry Pi to be mounted to a drone with other wireless sniffing equipment, we demonstrate that one can use various off the shelf components to create a powerful network detection device. In this write up, we also outline some of the challenges encountered by combining these two technologies, as well as the solutions to those challenges. Adding payload weight to drones that are not initially designed for it causes detrimental effects to various characteristics such as flight behavior and power consumption. Less computing power is available due to the miniaturization that must take place for a drone-mounted solution. Communication between the miniature computer and a ground control computer is also essential in overall system operation. Below, we highlight solutions to these various problems as well as improvements that can be implemented for maximum system effectiveness.
ContributorsHer, Zachary (Author) / Walker, Elizabeth (Co-author) / Gupta, Sandeep (Thesis director) / Wang, Ruoyu (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05