Matching Items (138)
Filtering by

Clear all filters

Description
Reasoning with commonsense knowledge is an integral component of human behavior. It is due to this capability that people know that a weak person may not be able to lift someone. It has been a long standing goal of the Artificial Intelligence community to simulate such commonsense reasoning abilities in

Reasoning with commonsense knowledge is an integral component of human behavior. It is due to this capability that people know that a weak person may not be able to lift someone. It has been a long standing goal of the Artificial Intelligence community to simulate such commonsense reasoning abilities in machines. Over the years, many advances have been made and various challenges have been proposed to test their abilities. The Winograd Schema Challenge (WSC) is one such Natural Language Understanding (NLU) task which was also proposed as an alternative to the Turing Test. It is made up of textual question answering problems which require resolution of a pronoun to its correct antecedent.

In this thesis, two approaches of developing NLU systems to solve the Winograd Schema Challenge are demonstrated. To this end, a semantic parser is presented, various kinds of commonsense knowledge are identified, techniques to extract commonsense knowledge are developed and two commonsense reasoning algorithms are presented. The usefulness of the developed tools and techniques is shown by applying them to solve the challenge.
ContributorsSharma, Arpita (Author) / Baral, Chitta (Thesis advisor) / Lee, Joohyung (Committee member) / Papotti, Paolo (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2019
Description
Feature embeddings differ from raw features in the sense that the former obey certain properties like notion of similarity/dissimilarity in it's embedding space. word2vec is a preeminent example in this direction, where the similarity in the embedding space is measured in terms of the cosine similarity. Such language embedding models

Feature embeddings differ from raw features in the sense that the former obey certain properties like notion of similarity/dissimilarity in it's embedding space. word2vec is a preeminent example in this direction, where the similarity in the embedding space is measured in terms of the cosine similarity. Such language embedding models have seen numerous applications in both language and vision community as they capture the information in the modality (English language) efficiently. Inspired by these language models, this work focuses on learning embedding spaces for two visual computing tasks, 1. Image Hashing 2. Zero Shot Learning. The training set was used to learn embedding spaces over which similarity/dissimilarity is measured using several distance metrics like hamming / euclidean / cosine distances. While the above-mentioned language models learn generic word embeddings, in this work task specific embeddings were learnt which can be used for Image Retrieval and Classification separately.

Image Hashing is the task of mapping images to binary codes such that some notion of user-defined similarity is preserved. The first part of this work focuses on designing a new framework that uses the hash-tags associated with web images to learn the binary codes. Such codes can be used in several applications like Image Retrieval and Image Classification. Further, this framework requires no labelled data, leaving it very inexpensive. Results show that the proposed approach surpasses the state-of-art approaches by a significant margin.

Zero-shot classification is the task of classifying the test sample into a new class which was not seen during training. This is possible by establishing a relationship between the training and the testing classes using auxiliary information. In the second part of this thesis, a framework is designed that trains using the handcrafted attribute vectors and word vectors but doesn’t require the expensive attribute vectors during test time. More specifically, an intermediate space is learnt between the word vector space and the image feature space using the hand-crafted attribute vectors. Preliminary results on two zero-shot classification datasets show that this is a promising direction to explore.
ContributorsGattupalli, Jaya Vijetha (Author) / Li, Baoxin (Thesis advisor) / Yang, Yezhou (Committee member) / Venkateswara, Hemanth (Committee member) / Arizona State University (Publisher)
Created2019
Description
The ubiquity of single camera systems in society has made improving monocular depth estimation a topic of increasing interest in the broader computer vision community. Inspired by recent work in sparse-to-dense depth estimation, this thesis focuses on sparse patterns generated from feature detection based algorithms as opposed to regular grid

The ubiquity of single camera systems in society has made improving monocular depth estimation a topic of increasing interest in the broader computer vision community. Inspired by recent work in sparse-to-dense depth estimation, this thesis focuses on sparse patterns generated from feature detection based algorithms as opposed to regular grid sparse patterns used by previous work. This work focuses on using these feature-based sparse patterns to generate additional depth information by interpolating regions between clusters of samples that are in close proximity to each other. These interpolated sparse depths are used to enforce additional constraints on the network’s predictions. In addition to the improved depth prediction performance observed from incorporating the sparse sample information in the network compared to pure RGB-based methods, the experiments show that actively retraining a network on a small number of samples that deviate most from the interpolated sparse depths leads to better depth prediction overall.

This thesis also introduces a new metric, titled Edge, to quantify model performance in regions of an image that show the highest change in ground truth depth values along either the x-axis or the y-axis. Existing metrics in depth estimation like Root Mean Square Error(RMSE) and Mean Absolute Error(MAE) quantify model performance across the entire image and don’t focus on specific regions of an image that are hard to predict. To this end, the proposed Edge metric focuses specifically on these hard to classify regions. The experiments also show that using the Edge metric as a small addition to existing loss functions like L1 loss in current state-of-the-art methods leads to vastly improved performance in these hard to classify regions, while also improving performance across the board in every other metric.
ContributorsRai, Anshul (Author) / Yang, Yezhou (Thesis advisor) / Zhang, Wenlong (Committee member) / Liang, Jianming (Committee member) / Arizona State University (Publisher)
Created2019
Description
A massive volume of data is generated at an unprecedented rate in the information age. The growth of data significantly exceeds the computing and storage capacities of the existing digital infrastructure. In the past decade, many methods are invented for data compression, compressive sensing and reconstruction, and compressed learning (learning

A massive volume of data is generated at an unprecedented rate in the information age. The growth of data significantly exceeds the computing and storage capacities of the existing digital infrastructure. In the past decade, many methods are invented for data compression, compressive sensing and reconstruction, and compressed learning (learning directly upon compressed data) to overcome the data-explosion challenge. While prior works are predominantly model-based, focus on small models, and not suitable for task-oriented sensing or hardware acceleration, the number of available models for compression-related tasks has escalated by orders of magnitude in the past decade. Motivated by this significant growth and the success of big data, this dissertation proposes to revolutionize both the compressive sensing reconstruction (CSR) and compressed learning (CL) methods from the data-driven perspective. In this dissertation, a series of topics on data-driven CSR are discussed. Individual data-driven models are proposed for the CSR of bio-signals, images, and videos with improved compression ratio and recovery fidelity trade-off. Specifically, a scalable Laplacian pyramid reconstructive adversarial network (LAPRAN) is proposed for single-image CSR. LAPRAN progressively reconstructs images following the concept of the Laplacian pyramid through the concatenation of multiple reconstructive adversarial networks (RANs). For the CSR of videos, CSVideoNet is proposed to improve the spatial-temporal resolution of reconstructed videos. Apart from CSR, data-driven CL is discussed in the dissertation. A CL framework is proposed to extract features directly from compressed data for image classification, objection detection, and semantic/instance segmentation. Besides, the spectral bias of neural networks is analyzed from the frequency perspective, leading to a learning-based frequency selection method for identifying the trivial frequency components which can be removed without accuracy loss. Compared with the conventional spatial downsampling approaches, the proposed frequency-domain learning method can achieve higher accuracy with reduced input data size. The methodologies proposed in this dissertation are not restricted to the above-mentioned applications. The dissertation also discusses other potential applications and directions for future research.
ContributorsXu, Kai (Author) / Ren, Fengbo (Thesis advisor) / Li, Baoxin (Committee member) / Turaga, Pavan (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2021
Description
This work solves the problem of incorrect rotations while using handheld devices.Two new methods which improve upon previous works are explored. The first method
uses an infrared camera to capture and detect the user’s face position and orient the
display accordingly. The second method utilizes gyroscopic and accelerometer data
as input to a

This work solves the problem of incorrect rotations while using handheld devices.Two new methods which improve upon previous works are explored. The first method
uses an infrared camera to capture and detect the user’s face position and orient the
display accordingly. The second method utilizes gyroscopic and accelerometer data
as input to a machine learning model to classify correct and incorrect rotations.
Experiments show that these new methods achieve an overall success rate of 67%
for the first and 92% for the second which reaches a new high for this performance
category. The paper also discusses logistical and legal reasons for implementing this
feature into an end-user product from a business perspective. Lastly, the monetary
incentive behind a feature like irRotate in a consumer device and explore related
patents is discussed.
ContributorsTallman, Riley (Author) / Yang, Yezhou (Thesis advisor) / Liang, Jianming (Committee member) / Chen, Yinong (Committee member) / Arizona State University (Publisher)
Created2020
Description
Imagery data has become important for civil infrastructure operation and

maintenance because imagery data can capture detailed visual information with high

frequencies. Computer vision can be useful for acquiring spatiotemporal details to

support the timely maintenance of critical civil infrastructures that serve society. Some

examples include: irrigation canals need to maintain the leaking sections

Imagery data has become important for civil infrastructure operation and

maintenance because imagery data can capture detailed visual information with high

frequencies. Computer vision can be useful for acquiring spatiotemporal details to

support the timely maintenance of critical civil infrastructures that serve society. Some

examples include: irrigation canals need to maintain the leaking sections to avoid water

loss; project engineers need to identify the deviating parts of the workflow to have the

project finished on time and within budget; detecting abnormal behaviors of air traffic

controllers is necessary to reduce operational errors and avoid air traffic accidents.

Identifying the outliers of the civil infrastructure can help engineers focus on targeted

areas. However, large amounts of imagery data bring the difficulty of information

overloading. Anomaly detection combined with contextual knowledge could help address

such information overloading to support the operation and maintenance of civil

infrastructures.

Some challenges make such identification of anomalies difficult. The first challenge is

that diverse large civil infrastructures span among various geospatial environments so

that previous algorithms cannot handle anomaly detection of civil infrastructures in

different environments. The second challenge is that the crowded and rapidly changing

workspaces can cause difficulties for the reliable detection of deviating parts of the

workflow. The third challenge is that limited studies examined how to detect abnormal

behaviors for diverse people in a real-time and non-intrusive manner. Using video andii

relevant data sources (e.g., biometric and communication data) could be promising but

still need a baseline of normal behaviors for outlier detection.

This dissertation presents an anomaly detection framework that uses contextual

knowledge, contextual information, and contextual data for filtering visual information

extracted by computer vision techniques (ADCV) to address the challenges described

above. The framework categorizes the anomaly detection of civil infrastructures into two

categories: with and without a baseline of normal events. The author uses three case

studies to illustrate how the developed approaches can address ADCV challenges in

different categories of anomaly detection. Detailed data collection and experiments

validate the developed ADCV approaches.
ContributorsChen, Jiawei (Author) / Tang, Pingbo (Thesis advisor) / Ayer, Steven (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2020
Description
The need for incorporating game engines into robotics tools becomes increasingly crucial as their graphics continue to become more photorealistic. This thesis presents a simulation framework, referred to as OpenUAV, that addresses cloud simulation and photorealism challenges in academic and research goals. In this work, OpenUAV is used to create

The need for incorporating game engines into robotics tools becomes increasingly crucial as their graphics continue to become more photorealistic. This thesis presents a simulation framework, referred to as OpenUAV, that addresses cloud simulation and photorealism challenges in academic and research goals. In this work, OpenUAV is used to create a simulation of an autonomous underwater vehicle (AUV) closely following a moving autonomous surface vehicle (ASV) in an underwater coral reef environment. It incorporates the Unity3D game engine and the robotics software Gazebo to take advantage of Unity3D's perception and Gazebo's physics simulation. The software is developed as a containerized solution that is deployable on cloud and on-premise systems.

This method of utilizing Gazebo's physics and Unity3D perception is evaluated for a team of marine vehicles (an AUV and an ASV) in a coral reef environment. A coordinated navigation and localization module is presented that allows the AUV to follow the path of the ASV. A fiducial marker underneath the ASV facilitates pose estimation of the AUV, and the pose estimates are filtered using the known dynamical system model of both vehicles for better localization. This thesis also investigates different fiducial markers and their detection rates in this Unity3D underwater environment. The limitations and capabilities of this Unity3D perception and Gazebo physics approach are examined.
ContributorsAnand, Harish (Author) / Das, Jnaneshwar (Thesis advisor) / Yang, Yezhou (Committee member) / Berman, Spring M (Committee member) / Arizona State University (Publisher)
Created2020
Description
Many real-world planning problems can be modeled as Markov Decision Processes (MDPs) which provide a framework for handling uncertainty in outcomes of action executions. A solution to such a planning problem is a policy that handles possible contingencies that could arise during execution. MDP solvers typically construct policies for a

Many real-world planning problems can be modeled as Markov Decision Processes (MDPs) which provide a framework for handling uncertainty in outcomes of action executions. A solution to such a planning problem is a policy that handles possible contingencies that could arise during execution. MDP solvers typically construct policies for a problem instance without re-using information from previously solved instances. Research in generalized planning has demonstrated the utility of constructing algorithm-like plans that reuse such information. However, using such techniques in an MDP setting has not been adequately explored.

This thesis presents a novel approach for learning generalized partial policies that can be used to solve problems with different object names and/or object quantities using very few example policies for learning. This approach uses abstraction for state representation, which allows the identification of patterns in solutions such as loops that are agnostic to problem-specific properties. This thesis also presents some theoretical results related to the uniqueness and succinctness of the policies computed using such a representation. The presented algorithm can be used as fast, yet greedy and incomplete method for policy computation while falling back to a complete policy search algorithm when needed. Extensive empirical evaluation on discrete MDP benchmarks shows that this approach generalizes effectively and is often able to solve problems much faster than existing state-of-art discrete MDP solvers. Finally, the practical applicability of this approach is demonstrated by incorporating it in an anytime stochastic task and motion planning framework to successfully construct free-standing tower structures using Keva planks.
ContributorsKala Vasudevan, Deepak (Author) / Srivastava, Siddharth (Thesis advisor) / Zhang, Yu (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2020
Description
Question answering is a challenging problem and a long term goal of Artificial Intelligence. There are many approaches proposed to solve this problem, including end to end machine learning systems, Information Retrieval based approaches and Textual Entailment. Despite being popular, these methods find difficulty in solving problems that require multi

Question answering is a challenging problem and a long term goal of Artificial Intelligence. There are many approaches proposed to solve this problem, including end to end machine learning systems, Information Retrieval based approaches and Textual Entailment. Despite being popular, these methods find difficulty in solving problems that require multi level reasoning and combining independent pieces of knowledge, for example, a question like "What adaptation is necessary in intertidal ecosystems but not in reef ecosystems?'', requires the system to consider qualities, behaviour or features of an organism living in an intertidal ecosystem and compare with that of an organism in a reef ecosystem to find the answer. The proposed solution is to solve a genre of questions, which is questions based on "Adaptation, Variation and Behavior in Organisms", where there are various different independent sets of knowledge required for answering questions along with reasoning. This method is implemented using Answer Set Programming and Natural Language Inference (which is based on machine learning ) for finding which of the given options is more probable to be the answer by matching it with the knowledge base. To evaluate this approach, a dataset of questions and a knowledge base in the domain of "Adaptation, Variation and Behavior in Organisms" is created.
ContributorsBatni, Vaishnavi (Author) / Baral, Chitta (Thesis advisor) / Anwar, Saadat (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2019
Description
Artificial general intelligence consists of many components, one of which is Natural Language Understanding (NLU). One of the applications of NLU is Reading Comprehension where it is expected that a system understand all aspects of a text. Further, understanding natural procedure-describing text that deals with existence of entities and effects

Artificial general intelligence consists of many components, one of which is Natural Language Understanding (NLU). One of the applications of NLU is Reading Comprehension where it is expected that a system understand all aspects of a text. Further, understanding natural procedure-describing text that deals with existence of entities and effects of actions on these entities while doing reasoning and inference at the same time is a particularly difficult task. A recent natural language dataset by the Allen Institute of Artificial Intelligence, ProPara, attempted to address the challenges to determine entity existence and entity tracking in natural text.

As part of this work, an attempt is made to address the ProPara challenge. The Knowledge Representation and Reasoning (KRR) community has developed effective techniques for modeling and reasoning about actions and similar techniques are used in this work. A system consisting of Inductive Logic Programming (ILP) and Answer Set Programming (ASP) is used to address the challenge and achieves close to state-of-the-art results and provides an explainable model. An existing semantic role label parser is modified and used to parse the dataset.

On analysis of the learnt model, it was found that some of the rules were not generic enough. To overcome the issue, the Proposition Bank dataset is then used to add knowledge in an attempt to generalize the ILP learnt rules to possibly improve the results.
ContributorsBhattacharjee, Aurgho (Author) / Baral, Chitta (Thesis advisor) / Yang, Yezhou (Committee member) / Anwar, Saadat (Committee member) / Arizona State University (Publisher)
Created2019