Long distance travel around the globe can potentially be revolutionized with the use of an intercontinental rocket that uses low earth orbit as its medium. This transport system can increase growth in many new businesses like tourism travel between the continents. This research evaluates the technical and non-technical possibilities of using a double-stage reusable rocket, where the second stage is also a reusable, rocket-powered passenger vehicle using a low earth orbit space journey with a stabilized re-entry method that ensures passenger comfortability. A potential network of spaceports spanning the globe is postulated within a range of 4,000 km to 8,000 km(2,160 nm to 4,320 nm) of each other, and each located within an hour by any other means of ground transport to population hubs greater than four million. This will help further connect the world as the journey from one major city to another would take at most an hour, and no point on the habited continents would be more than 4,000 km(2,160 nm) from a spaceport. It is assumed that the costs of an international first class flight ticket are in the thousands of dollars range showing how there is a potential market for this type of travel network. The reasoning and analysis, through a literature review, for an intercontinental rocket vehicle is presented along with the various aspects of the possibility of this kind of travel network coming to fruition in the near future.
Long distance travel around the globe can potentially be revolutionized with the use of an intercontinental rocket that uses low earth orbit as its medium. This transport system can increase growth in many new businesses like tourism travel between the continents. This research evaluates the technical and non-technical possibilities of using a double-stage reusable rocket, where the second stage is also a reusable, rocket-powered passenger vehicle using a low earth orbit space journey with a stabilized re-entry method that ensures passenger comfortability. A potential network of spaceports spanning the globe is postulated within a range of 4,000 km to 8,000 km(2,160 nm to 4,320 nm) of each other, and each located within an hour by any other means of ground transport to population hubs greater than four million. This will help further connect the world as the journey from one major city to another would take at most an hour, and no point on the habited continents would be more than 4,000 km(2,160 nm) from a spaceport. It is assumed that the costs of an international first class flight ticket are in the thousands of dollars range showing how there is a potential market for this type of travel network. The reasoning and analysis, through a literature review, for an intercontinental rocket vehicle is presented along with the various aspects of the possibility of this kind of travel network coming to fruition in the near future.
The contemporary world is motivated by data-driven decision-making. Small 501(c)3 nonprofit organizations are often limited in their reach due to their size, lack of funding, and a lack of data analysis expertise. In an effort to increase accessibility to data analysis for such organizations, a Founders Lab team designed a product to help them understand and utilize geographic information systems (GIS) software. This product – You Got GIS – strikes the balance between highly technical documentation and general overviews, benefiting 501(c)3 nonprofits in their pursuit of data-driven decision-making. Through the product’s use of case studies and methodologies, You Got GIS serves as a thought experiment platform to start answering questions regarding GIS. The product aims to continuously build partnerships in an effort to improve curriculum and user engagement.
As part of the Founders’ lab program, this thesis explores a social venture idea whose concept is to connect the philanthropic community with individuals and organizations in need of funding a project relating to (Sustainable Development Goals) SDG indicators through a peer-to-peer donation-based crowdfunding platform. Through this platform, the philanthropic community will have the possibility to easily access a wide range of projects to support as well as underserved individuals and communities seeking help, track their impact, donate in a complete transparent donation process, and automate donations through bank card round-ups. This social venture idea has been named PhilanthroGo.
As part of the Founders’ lab program, this thesis explores a social venture idea whose concept is to connect the philanthropic community with individuals and organizations in need of funding a project relating to (Sustainable Development Goals) SDG indicators through a peer to peer donation-based crowdfunding platform. Through this platform, the philanthropic community will have the possibility to easily access a wide range of projects to support as well as underserved individuals and communities seeking for help, track their impact, donate in a complete transparent donation process, and automate donations through bank card rounds-up. This social venture idea has been named PhilanthroGo.
Titanium has been and continues to be a popular metal across any form of manufacturing and production because of its extremely favorable properties. In important circumstances, it finds itself outclassing many metals by being lighter and less dense than comparably strong metals like steel. Relative to other metals it has a noteworthy corrosion resistance as it is stable when it oxidizes, and due to the inert nature of the metal, it is famously hypoallergenic and as a result used in a great deal of aviation and medical fields, including being used to produce replacement joints, with the notable limitation of the material being its cost of manufacturing. Among the variants of the metal and alloys used, Ti6Al4V alloy is famous for being the most reliable and popular combination for electron beam manufacturing(EBM) as a method of additive manufacturing. <br/>Developed by the Swedish Arcam, AB, EBM is one of the more recent methods of additive manufacturing, and is notable for its lack of waste by combining most of the material into the intended product due to its precision. This method, much like the titanium it is used to print in this case, is limited mostly by time and value of production. <br/>For this thesis, nine different simulations of a dogbone model were generated and analyzed in Ansys APDL using finite element analysis at various temperature and print conditions to create a theoretical model based on experimentally produced values.
This thesis project has been conducted in accordance with The Founder’s Lab initiative which is sponsored by the W. P. Carey School of Business. This program groups three students together and tasks them with creating a business idea, conducting the necessary research to bring the concept to life, and exploring different aspects of business, with the end goal of gaining traction. The product we were given to work through this process with was Hot Head, an engineering capstone project concept. The Hot Head product is a sustainable and innovative solution to the water waste issue we find is very prominent in the United States. In order to bring the Hot Head idea to life, we were tasked with doing research on topics ranging from the Hot Head life cycle to finding plausible personas who may have an interest in the Hot Head product. This paper outlines the journey to gaining traction via a marketing campaign and exposure of our brand on several platforms, with a specific interest in website traffic. Our research scope comes from mainly primary sources like gathering opinions of potential buyers by sending out surveys and hosting focus groups. The paper concludes with some possible future steps that could be taken if this project were to be continued.
As part of the Founders’ lab program, this thesis explores a social venture idea whose concept is to connect the philanthropic community with individuals and organizations in need of funding a project relating to (Sustainable Development Goals) SDG indicators through a peer to peer donation platform. Through this platform, the philanthropic community will have the possibility to easily access a wide range of projects to support as well as underserved individuals and communities seeking for help, track their impact, donate in a complete transparent donation process, and automate donations through bank card rounds-up. This social venture idea has been named PhilanthroGo.
In recent years, advanced metrics have dominated the game of Major League Baseball. One such metric, the Pythagorean Win-Loss Formula, is commonly used by fans, reporters, analysts and teams alike to use a team’s runs scored and runs allowed to estimate their expected winning percentage. However, this method is not perfect, and shows notable room for improvement. One such area that could be improved is its ability to be affected drastically by a single blowout game, a game in which one team significantly outscores their opponent.<br/>We hypothesize that meaningless runs scored in blowouts are harming the predictive power of Pythagorean Win-Loss and similar win expectancy statistics such as the Linear Formula for Baseball and BaseRuns. We developed a win probability-based cutoff approach that tallied the score of each game once a certain win probability threshold was passed, effectively removing those meaningless runs from a team’s season-long runs scored and runs allowed totals. These truncated totals were then inserted into the Pythagorean Win-Loss and Linear Formulas and tested against the base models.<br/>The preliminary results show that, while certain runs are more meaningful than others depending on the situation in which they are scored, the base models more accurately predicted future record than our truncated versions. For now, there is not enough evidence to either confirm or reject our hypothesis. In this paper, we suggest several potential improvement strategies for the results.<br/>At the end, we address how these results speak to the importance of responsibility and restraint when using advanced statistics within reporting.