Previous studies have demonstrated that the hypothalamus regulates neuroendocrine and autonomic function and behavior. Within the hypothalamus, the paraventricular nucleus (PVN) is an integratory node that contains neurons associated with the control of neuroendocrine and autonomic responses. The PVN also has one of the highest density of blood vessels within the brain. Alterations of normal PVN angiogenesis by dexamethasone could potentially result in long-term modifications of brain and endocrine functions.
Timed-pregnant Sprague Dawley female rats received DEX on gestational days 18-21 and the resulting progeny were sacrificed at Postnatal Day (PND) 0, 4, 14, and 21. A tomato lectin, Lycopersicon Esculentum labeled with DyLight594 was used to stain blood vessels in the PVN and scanning confocal microscopy was used to analyze the experimental brains for PVN blood vessel density
Analysis of data using a 3-way analysis of variance (ANOVA) with age, sex and treatment as main factors, showed a significant age effect in vascular density. Analysis of female data by 2-way ANOVA demonstrated a significant effect of age, but no treatment or interaction effects. Post-hoc analysis shows significant differences at PND 2, 4, 14, and 21 compared to PND0. A Student‘s t-test of a planned comparison on PND2 showed a significant reduction by DEX treatment (p < 0.05). Analysis of data from females, using 2-way ANOVA demonstrated a significant effect of age, but no treatment or interaction effects. Post-hoc analysis shows significant differences at PND 2, 4, 14, and 21 compared to PND0. A planned comparison at PND 2 using Student’s t-test indicated a significant reduction by dex treatment.
The results of these studies demonstrate that there is significant postnatal angiogenic programming and that the vascular density of the PVN is altered by prenatal dexamethasone administration at PND2. The time-course shows developmental fluctuations in vessel density that may prove to be physiologically significant for normal brain function and developmental programming of brain and behavior.

Diisobutylene maleic acid, or DIBMA, offers a novel approach to integral membrane protein extraction without requiring the use of detergent. This copolymer extracts the protein along with the surrounding lipids, creating native nanodiscs. This method of solubilization is the preferred method, as traditional detergent solubilization can possibly alter the structural and functional integrity of the membrane protein. DIBMA solubilization, on the other hand, is able to create a more stable environment for the integral membrane protein, while allowing purification through commonly used chromatography methods similar to established detergent solubilization protocols. In this project, we study the ability of DIBMA to isolate the integral membrane protein, chloroplast ATP synthase, without the use of detergents.