Matching Items (187)
Description
I present a multi-spectral analysis of the faint, uJy, radio source population in the James Webb Space Telescope North Ecliptic Pole Time Domain Field. Very Long Baseline Array pointings at the 127 brightest of ~2500 radio galaxies identified with the Very Large Array indicate active galactic nucleus contamination of approximately

I present a multi-spectral analysis of the faint, uJy, radio source population in the James Webb Space Telescope North Ecliptic Pole Time Domain Field. Very Long Baseline Array pointings at the 127 brightest of ~2500 radio galaxies identified with the Very Large Array indicate active galactic nucleus contamination of approximately 9.45%. My estimates of 4.8 GHz brightness of this radio source population indicate an upper bound on this contamination of 10.6%. This is well within acceptable limits, in population studies, for the use of the radio-FIR relation in the JWST NEP TDF. This improves the utility of the field to the community by reducing the need for expensive FIR observations. I have also developed an extensive catalog of magnitudes and other data in visible bands of this population. My analysis in these bands does not give any conclusive criteria for distinguishing between AGN and SFGs. The strongest trends I do identify appear to be due to reddening by interstellar dust. Future follow-up will focus on characterizing individual sources in further depth.
ContributorsNolan, Liam (Author) / Jansen, Rolf (Thesis director) / Windhorst, Rogier (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Earth and Space Exploration (Contributor) / Department of Physics (Contributor)
Created2022-05
Description
Real-Time Operating Systems are used in a variety of applications ranging from autonomous vehicles, flight controllers, and energy management systems to pacemakers, satellite tracking systems, amateur robotics and much more. It turns out that while general-purpose computers can perform tasks quite quickly, the execution time for various processes varies noticeably

Real-Time Operating Systems are used in a variety of applications ranging from autonomous vehicles, flight controllers, and energy management systems to pacemakers, satellite tracking systems, amateur robotics and much more. It turns out that while general-purpose computers can perform tasks quite quickly, the execution time for various processes varies noticeably between different executions. Execution time variation poses a big challenge for many computer-controlled systems that operate in the real-world such as robots, autonomous vehicles, drones, traffic signals, etc. The execution time variation matters in these systems since they must interact in the real world and perform actions at the proper times, and executing these tasks at other times can have varied effects ranging from a minor inconvenience to catastrophic failure. Many of these real-time systems are comprised of single board computers, such as a pacemaker. One single-board computer that is popular among hobbyists due to its form factor, cost, and performance is the Raspberry Pi, which uses an ARM-based processor. In order to provide a Real-Time Operating System for this single board computer this paper presents Jobbed, a single-core Real-Time Operating System which uses a fixed priority preemptive scheduler, targeted at the Raspberry Pi 2B. In this paper, we present the algorithmic structure behind this system and compare it to the Raspbian Operating System in an array of performance and behavioral tests targeted towards proper Real-Time Operating Systems.
ContributorsCunningham, Christian (Author) / Shrivastava, Aviral (Thesis director) / Vrudhula, Sarma (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05
Description

As the search for life in our universe grows, it is important to not only locate planets outside of our solar system, but also to work towards the ability to understand and characterize their nature. Many current research endeavors focus on the discovery of exoplanets throughout the surrounding universe; however,

As the search for life in our universe grows, it is important to not only locate planets outside of our solar system, but also to work towards the ability to understand and characterize their nature. Many current research endeavors focus on the discovery of exoplanets throughout the surrounding universe; however, we still know very little about the characteristics of these exoplanets themselves, particularly their atmospheres. Observatories, such as the Hubble Space Telescope and the Spitzer Space Telescope, have made some of the first observations which revealed information about the atmospheres of exoplanets but have yet to acquire complete and detailed characterizations of exoplanet atmospheres. The EXoplanet Climate Infrared TElescope (EXCITE) is a mission specifically designed to target key information about the atmospheres of exoplanets - including the global and spatially resolved energy budget, chemical bulk-compositions, vertical temperature profiles and circulation patterns across the surface, energy distribution efficiency as a function of equilibrium temperatures, and cloud formation and distribution - in order to generate dynamic and detailed atmospheric characterizations. EXCITE will use phase-resolved transit spectroscopy in the 1-4 micron wavelength range to accomplish these science goals, so it is important that the EXCITE spectrograph system is designed and tested to meet these observational requirements. For my thesis, I present my research on the EXCITE mission science goals and the design of the EXCITE spectrograph system to meet these goals, along with the work I have done in the beginning stages of testing the EXCITE spectrograph system in the lab. The primary result of my research work is the preparation of a simple optics setup in the lab to prepare a laser light source for use in the EXCITE spectrograph system - comparable to the preparation of incoming light by the EXCITE telescope system - which successfully yields an F# = 12.9 and a spot size of s = 39 ± 7 microns. These results meet the expectations of the system and convey appropriate preparation of a light source to begin the assembly and testing of the EXCITE spectrograph optics in the lab.

ContributorsHorvath, Zoe (Author) / Butler, Nathaniel (Thesis director) / Line, Michael (Committee member) / Scowen, Paul (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor) / Department of Physics (Contributor)
Created2022-05
Description
The Compact X-ray Light Source is an x-ray source at ASU that allows scientists to study the structures and dynamics of matter on an atomic scale. The radio frequency system that provides the power to accelerate electrons in the Compact X-ray Light Source must operate with a high degree of

The Compact X-ray Light Source is an x-ray source at ASU that allows scientists to study the structures and dynamics of matter on an atomic scale. The radio frequency system that provides the power to accelerate electrons in the Compact X-ray Light Source must operate with a high degree of precision. This thesis measures the precision with which that system performs.
ContributorsBabic, Gregory (Author) / Graves, William (Thesis director) / Kitchen, Jennifer (Committee member) / Holl, Mark (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor) / Department of Physics (Contributor)
Created2022-05
Description

This is a primer on the mathematic foundation of quantum mechanics. It seeks to introduce the topic in such a way that it is useful to both mathematicians and physicists by providing an extended example of abstract math concepts to work through and by going more in-depth in the math

This is a primer on the mathematic foundation of quantum mechanics. It seeks to introduce the topic in such a way that it is useful to both mathematicians and physicists by providing an extended example of abstract math concepts to work through and by going more in-depth in the math formalism than would normally be covered in a quantum mechanics class. The thesis begins by investigating functional analysis topics such as the Hilbert space and operators acting on them. Then it goes on to the postulates of quantum mechanics which extends the math formalism covered before to physics and works as the foundation for the rest of quantum mechanics.

ContributorsRedford, Thomas (Author) / Hines, Taylor (Thesis director) / Foy, Joseph (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05
Description

Introductory physics is one of the most difficult course sequences one can take as an undergraduate, due in no small part to the prerequisite knowledge of mathematics. Over the past six years, David Meltzer and his research group have developed a diagnostic meant to test students’ abilities in core mathematical

Introductory physics is one of the most difficult course sequences one can take as an undergraduate, due in no small part to the prerequisite knowledge of mathematics. Over the past six years, David Meltzer and his research group have developed a diagnostic meant to test students’ abilities in core mathematical concepts believed to be crucial foundations for learning physics. Concepts tested include the ability to solve systems of equations, work with trigonometric functions, manipulate fractions, and interpret information from graphs among others. With over 7000 students having taken the diagnostic, some patterns have begun to emerge, confirming work from other studies that suggest there is in fact a link between prerequisite math knowledge and success in an introductory physics course. However, most students take the diagnostic either in a classroom setting or online, so student responses are largely limited to being categorized as simply correct or incorrect. Even when students’ work is present it is impossible to assess their mindset when working through a problem without making inferences and logical leaps. In an attempt to better understand the nature of students’ misconceptions in mathematics I have conducted seven semi-formal interviews with introductory physics students just after they have completed the diagnostic where they walked me through their solutions and thought processes.

ContributorsByrd, John (Author) / Meltzer, David (Thesis director) / Covatto, Carl (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2022-05
Description
Research has shown that English language development among L2 learners can be greatly enhanced through at-home parental involvement. However, few pieces of research have studied how parents involve themselves in their child’s English education. In this study, questions revolving around the parents’ level of involvement with their child’s English education

Research has shown that English language development among L2 learners can be greatly enhanced through at-home parental involvement. However, few pieces of research have studied how parents involve themselves in their child’s English education. In this study, questions revolving around the parents’ level of involvement with their child’s English education are addressed to help analyze what Taiwanese parents are doing to enhance or hinder their child’s language-learning growth. Through the questionnaire data provided by forty-four of parental respondents, results suggest that parents’ involvement efforts are often not considered proportional to the child’s English educational success. Solutions to help parents nurture effective academic growth in children’s English learning endeavors are discussed to help parents better approach English educational involvement.
ContributorsFischer, Nathan (Author) / Matsuda, Aya (Thesis director) / Manalo, Emmanuel (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Department of Physics (Contributor)
Created2022-05
Description

In a hypothetical Grand Unified Theory, magnetic monopoles are a particle which would act as a charge carrier for the magnetic force. Evidence of magnetic monopoles has yet to be found and based off of their relatively high mass (4-10 TeV) will be difficult to find with current technology. The

In a hypothetical Grand Unified Theory, magnetic monopoles are a particle which would act as a charge carrier for the magnetic force. Evidence of magnetic monopoles has yet to be found and based off of their relatively high mass (4-10 TeV) will be difficult to find with current technology. The goal of my thesis is to mathematically model the magnetic monopole by finding numerical solutions to the equations of motion. In my analysis, I consider four cases: kinks, cosmic strings, global monopoles, and magnetic monopoles. I will also study electromagnetic gauge fields to prepare to include gauge fields in the magnetic monopole case. Numerical solutions are found for the cosmic string and global monopole cases. As expected, the energy is high at small distance r and drops off as r goes to infinity. Currently numerical solutions are being worked towards for electromagnetic gauge fields and the magnetic monopole case.

ContributorsBrown, Taryn (Author) / Vachaspati, Tanmay (Thesis director) / Keeler, Cynthia (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution & Social Change (Contributor) / Department of Physics (Contributor) / School of Earth and Space Exploration (Contributor)
Created2022-05
Description
Diffusion coefficients often vary across regions, such as cellular membranes, and quantifying their variation can provide valuable insight into local membrane properties such as composition and stiffness. Toward quantifying diffusion coefficient spatial maps and uncertainties from particle tracks, we use a Bayesian method and place Gaussian Process (GP) Priors on

Diffusion coefficients often vary across regions, such as cellular membranes, and quantifying their variation can provide valuable insight into local membrane properties such as composition and stiffness. Toward quantifying diffusion coefficient spatial maps and uncertainties from particle tracks, we use a Bayesian method and place Gaussian Process (GP) Priors on the maps. For the sake of computational efficiency, we leverage inducing point methods on GPs arising from the mathematical structure of the data giving rise to non-conjugate likelihood-prior pairs. We analyze both synthetic data, where ground truth is known, as well as data drawn from live-cell single-molecule imaging of membrane proteins. The resulting tool provides an unsupervised method to rigorously map diffusion coefficients continuously across membranes without data binning.
ContributorsKumar, Vishesh (Author) / Presse, Steve (Thesis director) / Bryan IV, J. Shep (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2024-05
Description
This thesis examines how a recently proposed concept for a highly-truncated aerospike nozzle can be expected to perform at altitudes corresponding to ambient pressures from sea-level to full vacuum conditions, as would occur during second-stage ascent and during second-stage descent and return to Earth. Of particular importance is how the base pressure varies

This thesis examines how a recently proposed concept for a highly-truncated aerospike nozzle can be expected to perform at altitudes corresponding to ambient pressures from sea-level to full vacuum conditions, as would occur during second-stage ascent and during second-stage descent and return to Earth. Of particular importance is how the base pressure varies with ambient pressure, especially at low ambient pressures for which the resulting highly underexpanded flows exiting from discrete thrust chambers around the truncated aerospike merge to create a closed (unventilated) base flow. The objective was to develop an approximate but usefully accurate and technically rooted way of estimating conditions for which the jets issuing from adjacent thrust chambers will merge before the end of the truncated aerospike is reached. Three main factors that determine the merging distance are the chamber pressure, the altitude, and the spacing between adjacent thrust chambers. The Prandtl-Meyer expansion angle was used to approximate the initial expansion of the jet flow issuing from each thrust chamber. From this an approximate criterion was developed for the downstream distance at which the jet flows from adjacent thrust chambers merge. Variations in atmospheric gas composition, specific heat ratio, temperature, and pressure with altitude from sea-level to 600 km were accounted for. Results showed that with decreasing atmospheric pressure during vehicle ascent, the merging distance decreases as the jet flows become increasingly under-expanded. Increasing the number of thrust chambers decreases the merging distance exponentially, and increasing chamber pressure results in a decrease of the merging distance as well.
ContributorsHerrington, Katie (Author) / Dahm, Werner (Thesis director) / Takahashi, Timothy (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Department of Physics (Contributor)
Created2024-05