Filtering by
- Creators: Mechanical and Aerospace Engineering Program
- Member of: Barrett, The Honors College Thesis/Creative Project Collection
Long distance travel around the globe can potentially be revolutionized with the use of an intercontinental rocket that uses low earth orbit as its medium. This transport system can increase growth in many new businesses like tourism travel between the continents. This research evaluates the technical and non-technical possibilities of using a double-stage reusable rocket, where the second stage is also a reusable, rocket-powered passenger vehicle using a low earth orbit space journey with a stabilized re-entry method that ensures passenger comfortability. A potential network of spaceports spanning the globe is postulated within a range of 4,000 km to 8,000 km(2,160 nm to 4,320 nm) of each other, and each located within an hour by any other means of ground transport to population hubs greater than four million. This will help further connect the world as the journey from one major city to another would take at most an hour, and no point on the habited continents would be more than 4,000 km(2,160 nm) from a spaceport. It is assumed that the costs of an international first class flight ticket are in the thousands of dollars range showing how there is a potential market for this type of travel network. The reasoning and analysis, through a literature review, for an intercontinental rocket vehicle is presented along with the various aspects of the possibility of this kind of travel network coming to fruition in the near future.
Long distance travel around the globe can potentially be revolutionized with the use of an intercontinental rocket that uses low earth orbit as its medium. This transport system can increase growth in many new businesses like tourism travel between the continents. This research evaluates the technical and non-technical possibilities of using a double-stage reusable rocket, where the second stage is also a reusable, rocket-powered passenger vehicle using a low earth orbit space journey with a stabilized re-entry method that ensures passenger comfortability. A potential network of spaceports spanning the globe is postulated within a range of 4,000 km to 8,000 km(2,160 nm to 4,320 nm) of each other, and each located within an hour by any other means of ground transport to population hubs greater than four million. This will help further connect the world as the journey from one major city to another would take at most an hour, and no point on the habited continents would be more than 4,000 km(2,160 nm) from a spaceport. It is assumed that the costs of an international first class flight ticket are in the thousands of dollars range showing how there is a potential market for this type of travel network. The reasoning and analysis, through a literature review, for an intercontinental rocket vehicle is presented along with the various aspects of the possibility of this kind of travel network coming to fruition in the near future.
Previous studies about the effects of regulatory institutions on the outcomes of regulation have resulted in a lack of consensus on the nature of these impacts. This paper seeks to resolve some of this ambiguity by analyzing two dimension of electric utility regulatory outcomes, prices and reliability, with a broader panel of explanatory variables and with a Hausman-Taylor regression technique. The results suggest that elected regulators and deregulated electricity markets result in worse reliability outcomes for consumers without strong evidence that either institution secures lower electricity prices. Incorporating these insights into a theoretical model of regulation could give more detailed insight into how to create regulatory institutions that can optimize the outcomes of governance.
Titanium has been and continues to be a popular metal across any form of manufacturing and production because of its extremely favorable properties. In important circumstances, it finds itself outclassing many metals by being lighter and less dense than comparably strong metals like steel. Relative to other metals it has a noteworthy corrosion resistance as it is stable when it oxidizes, and due to the inert nature of the metal, it is famously hypoallergenic and as a result used in a great deal of aviation and medical fields, including being used to produce replacement joints, with the notable limitation of the material being its cost of manufacturing. Among the variants of the metal and alloys used, Ti6Al4V alloy is famous for being the most reliable and popular combination for electron beam manufacturing(EBM) as a method of additive manufacturing. <br/>Developed by the Swedish Arcam, AB, EBM is one of the more recent methods of additive manufacturing, and is notable for its lack of waste by combining most of the material into the intended product due to its precision. This method, much like the titanium it is used to print in this case, is limited mostly by time and value of production. <br/>For this thesis, nine different simulations of a dogbone model were generated and analyzed in Ansys APDL using finite element analysis at various temperature and print conditions to create a theoretical model based on experimentally produced values.
This project dives into the journey of our entrepreneurial startup with the Founders Lab Thesis Program. In the global sports business industry, we knew that there was something missing. While conducting market research, there was little data and information about sustainability initiatives that engaged sports fans, especially in college sports. Not to mention, there was no sustainability information provided on any existing platforms that sporting teams use for ticketing and advertising. So, for our startup, we decided to create a website called SustainSports which gives fans the opportunity to inform themselves about sustainability initiatives at sports events (https://sustainsports.webflow.io/). These fans can also earn points and rewards for practicing sustainability activities at home. In short, SustainSports serves as an educational, interactive, and informative website that connects users to sustainability initiatives, community activities, and exciting rewards, while encouraging users to continue such environmentally-friendly practices in their daily lives. In chronological order, this thesis paper will examine the process we took to create SustainSports and demonstrate our efforts that properly allowed us to defend it one academic year later. From meetings with renowned sports enthusiasts and professors to interviews with ASU students and sports fans, we have listened to and taken in diverse perspectives to understand the perceptions of sustainability in the global sports industry. When we realized that there was a significant gap between sports and sustainability - both important elements of American society and culture - we knew a change needed to be made. Hence, SustainSports came to life, offering users a fresh opportunity to be more aware of their sustainability surroundings, while simultaneously enjoying the sports they know and love.
This thesis project has been conducted in accordance with The Founder’s Lab initiative which is sponsored by the W. P. Carey School of Business. This program groups three students together and tasks them with creating a business idea, conducting the necessary research to bring the concept to life, and exploring different aspects of business, with the end goal of gaining traction. The product we were given to work through this process with was Hot Head, an engineering capstone project concept. The Hot Head product is a sustainable and innovative solution to the water waste issue we find is very prominent in the United States. In order to bring the Hot Head idea to life, we were tasked with doing research on topics ranging from the Hot Head life cycle to finding plausible personas who may have an interest in the Hot Head product. This paper outlines the journey to gaining traction via a marketing campaign and exposure of our brand on several platforms, with a specific interest in website traffic. Our research scope comes from mainly primary sources like gathering opinions of potential buyers by sending out surveys and hosting focus groups. The paper concludes with some possible future steps that could be taken if this project were to be continued.
As part of the Founders’ lab program, this thesis explores a social venture idea whose concept is to connect the philanthropic community with individuals and organizations in need of funding a project relating to (Sustainable Development Goals) SDG indicators through a peer to peer donation platform. Through this platform, the philanthropic community will have the possibility to easily access a wide range of projects to support as well as underserved individuals and communities seeking for help, track their impact, donate in a complete transparent donation process, and automate donations through bank card rounds-up. This social venture idea has been named PhilanthroGo.