Filtering by
- Creators: Elser, James
- Member of: ASU Regents' Professors Open Access Works

The maintenance of chromosomal integrity is an essential task of every living organism and cellular repair mechanisms exist to guard against insults to DNA. Given the importance of this process, it is expected that DNA repair proteins would be evolutionarily conserved, exhibiting very minimal sequence change over time. However, BRCA1, an essential gene involved in DNA repair, has been reported to be evolving rapidly despite the fact that many protein-altering mutations within this gene convey a significantly elevated risk for breast and ovarian cancers.
Results
To obtain a deeper understanding of the evolutionary trajectory of BRCA1, we analyzed complete BRCA1 gene sequences from 23 primate species. We show that specific amino acid sites have experienced repeated selection for amino acid replacement over primate evolution. This selection has been focused specifically on humans and our closest living relatives, chimpanzees (Pan troglodytes) and bonobos (Pan paniscus). After examining BRCA1 polymorphisms in 7 bonobo, 44 chimpanzee, and 44 rhesus macaque (Macaca mulatta) individuals, we find considerable variation within each of these species and evidence for recent selection in chimpanzee populations. Finally, we also sequenced and analyzed BRCA2 from 24 primate species and find that this gene has also evolved under positive selection.
Conclusions
While mutations leading to truncated forms of BRCA1 are clearly linked to cancer phenotypes in humans, there is also an underlying selective pressure in favor of amino acid-altering substitutions in this gene. A hypothesis where viruses are the drivers of this natural selection is discussed.


“Stoichioproteomics” relates the elemental composition of proteins and proteomes to variation in the physiological and ecological environment. To help harness and explore the wealth of hypotheses made possible under this framework, we introduce GRASP (http://www.graspdb.net), a public bioinformatic knowledgebase containing information on the frequencies of 20 amino acids and atomic composition of their side chains. GRASP integrates comparative protein composition data with annotation data from multiple public databases. Currently, GRASP includes information on proteins of 12 sequenced Drosophila (fruit fly) proteomes, which will be expanded to include increasingly diverse organisms over time. In this paper we illustrate the potential of GRASP for testing stoichioproteomic hypotheses by conducting an exploratory investigation into the composition of 12 Drosophila proteomes, testing the prediction that protein atomic content is associated with species ecology and with protein expression levels.
Results
Elements varied predictably along multivariate axes. Species were broadly similar, with the D. willistoni proteome a clear outlier. As expected, individual protein atomic content within proteomes was influenced by protein function and amino acid biochemistry. Evolution in elemental composition across the phylogeny followed less predictable patterns, but was associated with broad ecological variation in diet. Using expression data available for D. melanogaster, we found evidence consistent with selection for efficient usage of elements within the proteome: as expected, nitrogen content was reduced in highly expressed proteins in most tissues, most strongly in the gut, where nutrients are assimilated, and least strongly in the germline.
Conclusions
The patterns identified here using GRASP provide a foundation on which to base future research into the evolution of atomic composition in Drosophila and other taxa.

Nutrient recycling by fish can be an important part of nutrient cycles in both freshwater and marine ecosystems. As a result, understanding the mechanisms that influence excretion elemental ratios of fish is of great importance to a complete understanding of aquatic nutrient cycles. As fish consume a wide range of diets that differ in elemental composition, stoichiometric theory can inform predictions about dietary effects on excretion ratios.
We conducted a meta-analysis to test the effects of diet elemental composition on consumption and nutrient excretion by fish. We examined the relationship between consumption rate and diet N : P across all laboratory studies and calculated effect sizes for each excretion metric to test for significant effects.
Consumption rate of N, but not P, was significantly negatively affected by diet N : P. Effect sizes of diet elemental composition on consumption-specific excretion N, P and N : P in laboratory studies were all significantly different from 0, but effect size for raw excretion N : P was not significantly different from zero in laboratory or field surveys.
Our results highlight the importance of having a mechanistic understanding of the drivers of consumer excretion rates and ratios. We suggest that more research is needed on how consumption and assimilation efficiency vary with N : P and in natural ecosystems in order to further understand mechanistic processes in consumer-driven nutrient recycling.
Here, focusing on calcium, phosphorus and nitrogen, we used nutritional geometry to analyse individual-based data on foraging and extraction efficiencies, and combined these with data on reproduction and migratory behaviour to understand how a large herbivorous carnivore can complete its life cycle on a narrow and seemingly low quality bamboo diet.
Behavioural results showed that pandas during the year switched between four main food categories involving the leaves and shoots of two bamboo species available. Nutritional analysis suggests that these diet shifts are related to the concentrations and balances of calcium, phosphorus and nitrogen. Notably, successive shifts in range use and food type corresponded with a transition to higher concentrations and/or a more balanced intake of these multiple key constituents.
Our study suggests that pandas obligatorily synchronize their seasonal migration and reproduction with the disjunct nutritional phenologies of two bamboo species. This finding has potentially important implications for habitat conservation for this species and, more generally, draws attention to the need for understanding the nutritional basis of food selection in devising management plans for endangered species.




