Matching Items (150)
Description
Over the course of 2015-2017, the ASU-SCMA/UASGC Outreach program was developed at Arizona State University (ASU) to support both high school students and college students interested in supply chain management careers. In particular, the program targets the high school students of the Urban Assembly School for Global Commerce (UASGC) and

Over the course of 2015-2017, the ASU-SCMA/UASGC Outreach program was developed at Arizona State University (ASU) to support both high school students and college students interested in supply chain management careers. In particular, the program targets the high school students of the Urban Assembly School for Global Commerce (UASGC) and the college students of the ASU Supply Chain Management Association (ASU-SCMA). High school students are partnered with college students in a year-long mentoring program that allows both parties to develop professional supply chain skills. The work of the ASU-SCMA/UASGC Outreach Program is particularly important because it provides UASGC with much needed resources to address urban poverty issues in New York using career and technical education. The Urban Assembly describes its student group as "at-risk, under-resourced youth," and of those youth: - 85% are low-income - 83% enter high school below grade level in at least one subject - 20% require Individualized Education Plans (Special Needs) (urbanassembly.org). The Outreach Program addresses the above issues by providing the high school students with collegiate mentors that develop supply chain and college readiness resources in the form of a case study, site tour, supply chain simulation and presentations. In order to be considered successful, the program must first, equip the high school mentees with tools and skills for a professional career, specifically supply chain management, that they would not otherwise be exposed to; and second, motivate the collegiate participants who are about to enter the workforce to continue to participate in mentoring throughout their careers. This program documents the efforts and results of the pilot year for the Outreach Program that took place from September 2016 through March 2017. Through this pilot program, it was determined that the ASU-SCMA/UASGC Outreach Program is effective and valuable. In fact, the program found that: - 75% of the high school students agreed or strongly agreed that the program helped them learn new business skills. - 75% of the high school students agreed that the program taught them new, interesting things about supply chain. - 75% of the high school students became more interested in college. 100% of the college mentors agreed or strongly agreed that they gained new and important supply chain and professional skills. The success of the pilot year has led to plans for the Outreach Program to become an annual project for ASU-SCMA. This is a program that will continue for the foreseeable future.
ContributorsLam, Tiffany Ai (Author) / Davila, Eduardo (Thesis director) / Manfredo, Mark (Committee member) / Department of Economics (Contributor) / Department of Information Systems (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description

This project dives into the journey of our entrepreneurial startup with the Founders Lab Thesis Program. In the global sports business industry, we knew that there was something missing. While conducting market research, there was little data and information about sustainability initiatives that engaged sports fans, especially in college sports.

This project dives into the journey of our entrepreneurial startup with the Founders Lab Thesis Program. In the global sports business industry, we knew that there was something missing. While conducting market research, there was little data and information about sustainability initiatives that engaged sports fans, especially in college sports. Not to mention, there was no sustainability information provided on any existing platforms that sporting teams use for ticketing and advertising. So, for our startup, we decided to create a website called SustainSports which gives fans the opportunity to inform themselves about sustainability initiatives at sports events (https://sustainsports.webflow.io/). These fans can also earn points and rewards for practicing sustainability activities at home. In short, SustainSports serves as an educational, interactive, and informative website that connects users to sustainability initiatives, community activities, and exciting rewards, while encouraging users to continue such environmentally friendly practices in their daily lives. In chronological order, this thesis paper will examine the process we took to create SustainSports and demonstrate our efforts that properly allowed us to defend it one academic year later. From meetings with renowned sports enthusiasts and professors to interviews with ASU students and sports fans, we have listened to and taken in diverse perspectives to understand the perceptions of sustainability in the global sports industry. When we realized that there was a significant gap between sports and sustainability - both important elements of American society and culture - we knew a change needed to be made. Hence, SustainSports came to life, offering users a fresh opportunity to be more aware of their sustainability surroundings, while simultaneously enjoying the sports they know and love.

ContributorsBruce, Daniel (Co-author) / Stanisic, Yelena (Co-author) / Thirunagari, Samay (Co-author) / Byrne, Jared (Thesis director) / Lee, Christopher (Committee member) / Kunowski, Jeff (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The mental health of ASU students has been negatively affected by the pandemic. Our research looks to prove that COVID-19 has caused an increase in stress levels while uncovering other relationships to stress. We obtained our data by conducting a survey through Google Forms that was exclusively accessible to ASU

The mental health of ASU students has been negatively affected by the pandemic. Our research looks to prove that COVID-19 has caused an increase in stress levels while uncovering other relationships to stress. We obtained our data by conducting a survey through Google Forms that was exclusively accessible to ASU students. Stress levels were measured with the use of the Perceived Stress Scale (PSS). We find that the stress of ASU students from before the pandemic to during rises from 15 to 22 points, a 50% increase (n = 228). We discovered that women are more stressed than men before and during the pandemic. We also discovered that there is no difference between stresses among different races. We notice that there is a parabolic relationship between enrollment time and stress levels with the peak occurring during semesters 2-6. We also conclude that students who attended more than 5 events during the pandemic had lower stress scores, and those who had their videos on for at least 3 events had lower stress scores. Furthermore, students who utilized campus resources to manage their stress had higher stress levels than those who did not.

ContributorsRana, Mannat (Co-author) / Levine, Benjamin (Co-author) / Martin, Thomas (Thesis director) / Rendell, Dawn (Committee member) / College of Integrative Sciences and Arts (Contributor) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The purpose of this creative project was to create a stereo sound system in a unique medium. As a team, we decided to integrate a Tesla Coil with a bluetooth audio source. These high frequency, high voltage systems can be configured to emit their electrical discharge in a manner that

The purpose of this creative project was to create a stereo sound system in a unique medium. As a team, we decided to integrate a Tesla Coil with a bluetooth audio source. These high frequency, high voltage systems can be configured to emit their electrical discharge in a manner that resembles playing tunes. Originally the idea was to split the audio into left and right, then to further segregate the signals to have a treble, mid, and base emitter for each side. Due to time, budget, and scope constraints, we decided to complete the project with only two coils.<br/><br/>For this project, the team decided to use a solid-state coil kit. This kit was purchased from OneTelsa and would help ensure everyone’s safety and the project’s success. The team developed our own interrupting or driving circuit through reverse-engineering the interrupter provided by oneTesla and discussing with other engineers. The custom interpreter was controlled by the PSoC5 LP and communicated with an audio source through the DFRobot Bluetooth module. Utilizing the left and right audio signals it can drive the two Tesla Coils in stereo to play the music.

ContributorsPinkowski, Olivia N (Co-author) / Hutcherson, Cree (Co-author) / Jordan, Shawn (Thesis director) / Sugar, Thomas (Committee member) / Engineering Programs (Contributor, Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The purpose of this creative project was to create a stereo sound system in a unique medium. As a team, we decided to integrate a Tesla Coil with a bluetooth audio source. These high frequency, high voltage systems can be configured to emit their electrical discharge in a manner that

The purpose of this creative project was to create a stereo sound system in a unique medium. As a team, we decided to integrate a Tesla Coil with a bluetooth audio source. These high frequency, high voltage systems can be configured to emit their electrical discharge in a manner that resembles playing tunes. Originally the idea was to split the audio into left and right, then to further segregate the signals to have a treble, mid, and base emitter for each side. Due to time, budget, and scope constraints, we decided to complete the project with only two coils.<br/><br/>For this project, the team decided to use a solid-state coil kit. This kit was purchased from OneTelsa and would help ensure everyone’s safety and the project’s success. The team developed our own interrupting or driving circuit through reverse-engineering the interrupter provided by oneTesla and discussing with other engineers. The custom interpreter was controlled by the PSoC5 LP and communicated with an audio source through the DFRobot Bluetooth module. Utilizing the left and right audio signals it can drive the two Tesla Coils in stereo to play the music.

ContributorsHutcherson, Cree (Co-author) / Pinkowski, Olivia (Co-author) / Jordan, Shawn (Thesis director) / Sugar, Thomas (Committee member) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This thesis worked towards the development of a parameterized 3D model off a cover that could go over any specific prosthesis depending on the parameters that had been entered. It also focused on gathering user inputs, which was done with the aid of the Amputee Coalition, that could be used

This thesis worked towards the development of a parameterized 3D model off a cover that could go over any specific prosthesis depending on the parameters that had been entered. It also focused on gathering user inputs, which was done with the aid of the Amputee Coalition, that could be used to create an aesthetic design on this cover. The Amputee Coalition helped to recruit participants through its website and social media platforms. Finally, multiple methods of creating a design were developed to increase the amount of customization that a user could have for their cover.

ContributorsRiley, Nicholas (Co-author) / Fusaro, Gerard (Co-author) / Sugar, Thomas (Thesis director) / Redkar, Sangram (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This thesis worked towards the development of a parameterized 3D model off a cover that could go over any specific prosthesis depending on the parameters that had been entered. It also focused on gathering user inputs, which was done with the aid of the Amputee Coalition, that could be used

This thesis worked towards the development of a parameterized 3D model off a cover that could go over any specific prosthesis depending on the parameters that had been entered. It also focused on gathering user inputs, which was done with the aid of the Amputee Coalition, that could be used to create an aesthetic design on this cover. The Amputee Coalition helped to recruit participants through its website and social media platforms. Finally, multiple methods of creating a design were developed to increase the amount of customization that a user could have for their cover.

ContributorsFusaro, Gerard Anthony (Co-author) / Riley, Nicholas (Co-author) / Sugar, Thomas (Thesis director) / Redkar, Sangram (Committee member) / College of Integrative Sciences and Arts (Contributor) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Due to the vast increase in processing power and energy usage in computing, a need for greater heat dissipation is prevalent. With numerous applications demanding cheaper and more efficient options for thermal management, new technology must be employed. Through the use of additive manufacturing, designs and structures can be created

Due to the vast increase in processing power and energy usage in computing, a need for greater heat dissipation is prevalent. With numerous applications demanding cheaper and more efficient options for thermal management, new technology must be employed. Through the use of additive manufacturing, designs and structures can be created that were not physically possible before without extensive costs. The goal is to design a system that utilizes capillary action, which is the ability for liquids to flow through narrow spaces unassisted. The level of detail required may be achieved with direct metal laser sintering (DMLS) and stereolithography (SLA) 3D printing.

ContributorsFechter, Andrew (Author) / Bhate, Dhruv (Thesis director) / Frank, Daniel (Committee member) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The majority of drones are extremely simple, their functions include flight and sometimes recording video and audio. While drone technology has continued to improve these functions, particularly flight, additional functions have not been added to mainstream drones. Although these basic functions serve as a good framework for drone designs, it

The majority of drones are extremely simple, their functions include flight and sometimes recording video and audio. While drone technology has continued to improve these functions, particularly flight, additional functions have not been added to mainstream drones. Although these basic functions serve as a good framework for drone designs, it is now time to extend off from this framework. With this Honors Thesis project, we introduce a new function intended to eventually become common to drones. This feature is a grasping mechanism that is capable of perching on branches and carrying loads within the weight limit. This concept stems from the natural behavior of many kinds of insects. It paves the way for drones to further imitate the natural design of flying creatures. Additionally, it serves to advocate for dynamic drone frames, or morphing drone frames, to become more common practice in drone designs.

ContributorsMacias, Jose Carlos (Co-author) / Goldenberg, Edward Bradley (Co-author) / Downey, Matthew (Co-author) / Zhang, Wenlong (Thesis director) / Aukes, Daniel (Committee member) / Human Systems Engineering (Contributor) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The mental health of ASU students has been negatively affected by the pandemic. Our research looks to prove that COVID-19 has caused an increase in stress levels while uncovering other relationships to stress. We obtained our data by conducting a survey through Google Forms that was exclusively accessible to ASU

The mental health of ASU students has been negatively affected by the pandemic. Our research looks to prove that COVID-19 has caused an increase in stress levels while uncovering other relationships to stress. We obtained our data by conducting a survey through Google Forms that was exclusively accessible to ASU students. Stress levels were measured with the use of the Perceived Stress Scale (PSS). We find that the stress of ASU students from before the pandemic to during rises from 15 to 22 points, a 50% increase (n = 228). We discovered that women are more stressed than men before and during the pandemic. We also discovered that there is no difference between stresses among different races. We notice that there is a parabolic relationship between enrollment time and stress levels with the peak occurring during semesters 2-6. We also conclude that students who attended more than 5 events during the pandemic had lower stress scores, and those who had their videos on for at least 3 events had lower stress scores. Furthermore, students who utilized campus resources to manage their stress had higher stress levels than those who did not.

ContributorsRana, Mannat (Co-author) / Levine, Benjamin (Co-author) / Martin, Thomas (Thesis director) / Rendell, Dawn (Committee member) / College of Integrative Sciences and Arts (Contributor) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05