Matching Items (167)
Description

This thesis is broken into two parts: the research and the toolkit. The research portion examines the benefits posed by the Barrett Student Engagement team to the Barrett Polytechnic community. Literature on student retention and attrition, inside and outside of an honors curriculum, was reviewed to better understand likely factors

This thesis is broken into two parts: the research and the toolkit. The research portion examines the benefits posed by the Barrett Student Engagement team to the Barrett Polytechnic community. Literature on student retention and attrition, inside and outside of an honors curriculum, was reviewed to better understand likely factors contributing to an increase of attrition rates. The primary question in focus is: “What are the benefits student engagement poses for Barrett Poly students?” followed by the secondary question of: “How can the student engagement team best support Barrett Poly students?” Data from the past five semesters has been collected and analyzed to determine the general trends and the strengths and weaknesses within each of the six engagement pillars. As the position of Student Engagement Assistant requires a fair amount of training for short-term employment (can be held until graduation from ASU), it is beneficial to have a training manual in place for workers to reference. The project has been made available in a hybrid format to best accommodate future changes in procedures and resources. A summary of the additional materials has been included at the end of this report.

ContributorsGriffin, Kiley (Author) / O'Flaherty, Katherine (Thesis director) / Albin, Joshua (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2022-05
Description
The aim of this project is to create a trifold pamphlet that can raise awareness of female Attention-Deficit Hyperactivity/Impulsivity Disorder (ADHD). ADHD is a neurodevelopmental disorder that has three types: inattentive type, hyperactive type, and combined type. Female individuals with ADHD can present their symptoms slightly differently than males with

The aim of this project is to create a trifold pamphlet that can raise awareness of female Attention-Deficit Hyperactivity/Impulsivity Disorder (ADHD). ADHD is a neurodevelopmental disorder that has three types: inattentive type, hyperactive type, and combined type. Female individuals with ADHD can present their symptoms slightly differently than males with ADHD. Additionally females with ADHD are typically underdiagnosed and therefore go untreated for their ADHD. Females with ADHD show more emotional problems and comorbid internalizing disorders than males with ADHD show.
ContributorsEisenberg, Deborah (Author) / Meloy, Elizabeth (Thesis director) / Ocampo-Hoogasian, Rachel (Committee member) / Barrett, The Honors College (Contributor) / College of Integrative Sciences and Arts (Contributor) / Engineering Programs (Contributor)
Created2022-05
Description

In nature, some animals have an exoskeleton that provides protection, strength, and stability to the organism, but in engineering, an exoskeleton refers to a device that augments or aids human ability. Since the 1890s, engineers have been designing exoskeletal devices, and conducting research into the possible uses of such devices.

In nature, some animals have an exoskeleton that provides protection, strength, and stability to the organism, but in engineering, an exoskeleton refers to a device that augments or aids human ability. Since the 1890s, engineers have been designing exoskeletal devices, and conducting research into the possible uses of such devices. These bio-inspired mechanisms do not necessarily relate to a robotic device, though since the 1900s, robotic principles have been applied to the design of exoskeletons making their development a subfield in robotic research. There are different multiple types of exoskeletons that target different areas of the human body, and the targeted area depends on the need of the device. Usually, the devices are developed for medical or military usage; for this project, the focus is on medical development of an automated elbow joint to assist in rehabilitation. This project is being developed for therapeutic purposes in conjunction between Arizona State University and Mayo Clinic. Because of the nature of this project, I am responsible for the development of a lightweight brace that could be applied to the elbow joint that was designed by Dr. Kevin Hollander. In this project, my research centered on the use of the Wilmer orthosis brace design, and its possible application to the exoskeleton elbow being developed for Mayo Clinic. This brace is a lightweight solution that provides extra comfort to the user.

ContributorsCarlton, Bryan (Author) / Sugar, Thomas (Thesis director) / Aukes, Daniel (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2022-05
Description

Toy hacks modify commercially available toys to be more easily used by people with motor disabilities, and donate them to schools, families, or toy libraries. Switch-adapting a toy adds an audio jack to allow an assistive technology (AT) switch to be plugged in. Switch-adapted toys help children develop essential skills

Toy hacks modify commercially available toys to be more easily used by people with motor disabilities, and donate them to schools, families, or toy libraries. Switch-adapting a toy adds an audio jack to allow an assistive technology (AT) switch to be plugged in. Switch-adapted toys help children develop essential skills through play. Hacking toys is helpful because toys that come with AT switches are often significantly more expensive than their unadapted counterparts. Toy hacks are also an opportunity to teach and practice engineering skills such as soldering and technical problem solving. Many resources are available online to assist makers with hosting toy hacks, but most of them lack information on holding the event. To fill this gap, the authors created a toy hack guide website, drawing from experience hosting two toy hacks. It walks users through steps like choosing the size of the event, the materials that need to be purchased, and connects them to other existing resources. In the future, it will be used to help people host more successful toy hacks.

ContributorsBushroe, Isabella (Author) / Koehl, Bridget (Co-author) / Frank, Daniel (Thesis director) / Brunhaver, Samantha (Committee member) / Martin, Thomas (Committee member) / Barrett, The Honors College (Contributor) / School of Art (Contributor) / Engineering Programs (Contributor)
Created2022-05
Description

Toy hacks modify commercially available toys to be more easily used by people with motor disabilities, and donate them to schools, families, or toy libraries. Switch-adapting a toy adds an audio jack to allow an assistive technology (AT) switch to be plugged in. Switch-adapted toys help children develop essential skills

Toy hacks modify commercially available toys to be more easily used by people with motor disabilities, and donate them to schools, families, or toy libraries. Switch-adapting a toy adds an audio jack to allow an assistive technology (AT) switch to be plugged in. Switch-adapted toys help children develop essential skills through play. Hacking toys is helpful because toys that come with AT switches are often significantly more expensive than their unadapted counterparts. Toy hacks are also an opportunity to teach and practice engineering skills such as soldering and technical problem solving. Many resources are available online to assist makers with hosting toy hacks, but most of them lack information on holding the event. To fill this gap, the authors created a toy hack guide website, drawing from experience hosting two toy hacks. It walks users through steps like choosing the size of the event, the materials that need to be purchased, and connects them to other existing resources. In the future, it will be used to help people host more successful toy hacks.

ContributorsKoehl, Bridget (Author) / Bushroe, Isabella (Co-author) / Frank, Daniel (Thesis director) / Brunhaver, Samantha (Committee member) / Martin, Thomas (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2022-05
Description

During a joint ASU-Prescott College visit to the Maasai Mara in Kenya in June-July 2018, it became obvious that many Maasai women produce beadwork sold locally to help support their families. The difficulties they face include inconsistent sales due to lack of customers, lulls in tourism, and unfair competition. During

During a joint ASU-Prescott College visit to the Maasai Mara in Kenya in June-July 2018, it became obvious that many Maasai women produce beadwork sold locally to help support their families. The difficulties they face include inconsistent sales due to lack of customers, lulls in tourism, and unfair competition. During this visit, the idea of selling the crafts online via Etsy was suggested. It received overwhelming support from the community through MERC, the The Maasai Education, Research and Conservation Institute.

ContributorsDeming, Charlotte (Author) / Martin, Thomas (Thesis director) / Henderson, Mark (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2022-05
Description

In this paper, we discuss the methods and requirements to simulate a soft bodied beam using traditional rigid body kinematics to produce motion inspired by eels. Eels produce a form of undulatory locomotion called anguilliform locomotion that propagates waves throughout the entire body. The system that we are analyzing is

In this paper, we discuss the methods and requirements to simulate a soft bodied beam using traditional rigid body kinematics to produce motion inspired by eels. Eels produce a form of undulatory locomotion called anguilliform locomotion that propagates waves throughout the entire body. The system that we are analyzing is a flexible 3D printed beam being actively driven by a servo motor. Using the simulation, we also analyze different parameters for these spines to maximize the linear speed of the system.

ContributorsKwan, Anson (Author) / Aukes, Daniel (Thesis director) / Marvi, Hamidreza (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2022-05
Description

After the wind tunnels in the SIM building and Innovation Hub were donated or lost, Dr. Rajadas requested a new wind tunnel be designed, developed, and fabricated using facilities and resources available on ASU Polytech. Over 6 months, a single student was tasked with running the CAD modeling process, undergoing

After the wind tunnels in the SIM building and Innovation Hub were donated or lost, Dr. Rajadas requested a new wind tunnel be designed, developed, and fabricated using facilities and resources available on ASU Polytech. Over 6 months, a single student was tasked with running the CAD modeling process, undergoing the revision stages, and welding/fabricating the tunnel by the end of Fall 2021.

ContributorsAcevedo, Rodrigo (Author, Co-author) / Rajadas, John (Thesis director) / Nam, Changho (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2021-12
Description

With FDM printing becoming ubiquitous within the commercial and private sectors, there are many who would want to print a part without supports for a variety of reasons. Usually, they want to prints a part with difficult to reach places that would make it impossible to remove any support material

With FDM printing becoming ubiquitous within the commercial and private sectors, there are many who would want to print a part without supports for a variety of reasons. Usually, they want to prints a part with difficult to reach places that would make it impossible to remove any support material without damaging the part. I will be going over options to consider when designing parts to ensure a given model will be able to be printed without support material.

ContributorsYoshitake, Jacob (Author) / Sugar, Thomas (Thesis director) / Redkar, Sangram (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2021-12
Description
Model Predictive Control (MPC) is a fairly recent development in control optimization theory with high potential for use in the automotive industry, specifically in electric vehicle energy management systems. Because model predictive control is a particularly young concept and due to the MPC’s high computational load, it is overlooked when

Model Predictive Control (MPC) is a fairly recent development in control optimization theory with high potential for use in the automotive industry, specifically in electric vehicle energy management systems. Because model predictive control is a particularly young concept and due to the MPC’s high computational load, it is overlooked when compared to conventional control methods such as Proportional Integral Derivative (PID) controllers. Among recent advancements in computing technology in electric vehicles, model predictive controllers have become a viable solution in electric vehicle (EV) Energy Management Systems (EMS). The distinction between MPCs and other EMS control methods can be summarized by MPC’s ability to optimize outputs in systems where multiple constraints and state-space variables are introduced where conventional methods cannot. The MPC achieves this by using predictive modeling, allowing it system states based on information provided through a feedback loop. Feasibility for the use of MPCs in EV EMSs will be supported by using a simulated dual-motor electric vehicle in SIMULINKs Virtual Vehicle Composer (VVC) application. Findings from repeated simulations have proven model predictive control to be an effective alternative optimization strategy for electric vehicle energy management systems.
ContributorsWild, Trevor (Author) / Chen, Yan (Thesis director) / Zhao, Junfeng (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2024-05