Matching Items (33)

Description
Background
Multicellular organisms consist of cells of many different types that are established during development. Each type of cell is characterized by the unique combination of expressed gene products as a result of spatiotemporal gene regulation. Currently, a fundamental challenge in regulatory biology is to elucidate the gene expression controls that generate the complex body plans during development. Recent advances in high-throughput biotechnologies have generated spatiotemporal expression patterns for thousands of genes in the model organism fruit fly Drosophila melanogaster. Existing qualitative methods enhanced by a quantitative analysis based on computational tools we present in this paper would provide promising ways for addressing key scientific questions.
Results
We develop a set of computational methods and open source tools for identifying co-expressed embryonic domains and the associated genes simultaneously. To map the expression patterns of many genes into the same coordinate space and account for the embryonic shape variations, we develop a mesh generation method to deform a meshed generic ellipse to each individual embryo. We then develop a co-clustering formulation to cluster the genes and the mesh elements, thereby identifying co-expressed embryonic domains and the associated genes simultaneously. Experimental results indicate that the gene and mesh co-clusters can be correlated to key developmental events during the stages of embryogenesis we study. The open source software tool has been made available at http://compbio.cs.odu.edu/fly/.
Conclusions
Our mesh generation and machine learning methods and tools improve upon the flexibility, ease-of-use and accuracy of existing methods.
Multicellular organisms consist of cells of many different types that are established during development. Each type of cell is characterized by the unique combination of expressed gene products as a result of spatiotemporal gene regulation. Currently, a fundamental challenge in regulatory biology is to elucidate the gene expression controls that generate the complex body plans during development. Recent advances in high-throughput biotechnologies have generated spatiotemporal expression patterns for thousands of genes in the model organism fruit fly Drosophila melanogaster. Existing qualitative methods enhanced by a quantitative analysis based on computational tools we present in this paper would provide promising ways for addressing key scientific questions.
Results
We develop a set of computational methods and open source tools for identifying co-expressed embryonic domains and the associated genes simultaneously. To map the expression patterns of many genes into the same coordinate space and account for the embryonic shape variations, we develop a mesh generation method to deform a meshed generic ellipse to each individual embryo. We then develop a co-clustering formulation to cluster the genes and the mesh elements, thereby identifying co-expressed embryonic domains and the associated genes simultaneously. Experimental results indicate that the gene and mesh co-clusters can be correlated to key developmental events during the stages of embryogenesis we study. The open source software tool has been made available at http://compbio.cs.odu.edu/fly/.
Conclusions
Our mesh generation and machine learning methods and tools improve upon the flexibility, ease-of-use and accuracy of existing methods.
ContributorsZhang, Wenlu (Author) / Feng, Daming (Author) / Li, Rongjian (Author) / Chernikov, Andrey (Author) / Chrisochoides, Nikos (Author) / Osgood, Christopher (Author) / Konikoff, Charlotte (Author) / Newfeld, Stuart (Author) / Kumar, Sudhir (Author) / Ji, Shuiwang (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2013-12-28

Learning Sparse Representations for Fruit-Fly Gene Expression Pattern Image Annotation and Retrieval
Description
Background
Fruit fly embryogenesis is one of the best understood animal development systems, and the spatiotemporal gene expression dynamics in this process are captured by digital images. Analysis of these high-throughput images will provide novel insights into the functions, interactions, and networks of animal genes governing development. To facilitate comparative analysis, web-based interfaces have been developed to conduct image retrieval based on body part keywords and images. Currently, the keyword annotation of spatiotemporal gene expression patterns is conducted manually. However, this manual practice does not scale with the continuously expanding collection of images. In addition, existing image retrieval systems based on the expression patterns may be made more accurate using keywords.
Results
In this article, we adapt advanced data mining and computer vision techniques to address the key challenges in annotating and retrieving fruit fly gene expression pattern images. To boost the performance of image annotation and retrieval, we propose representations integrating spatial information and sparse features, overcoming the limitations of prior schemes.
Conclusions
We perform systematic experimental studies to evaluate the proposed schemes in comparison with current methods. Experimental results indicate that the integration of spatial information and sparse features lead to consistent performance improvement in image annotation, while for the task of retrieval, sparse features alone yields better results.
Fruit fly embryogenesis is one of the best understood animal development systems, and the spatiotemporal gene expression dynamics in this process are captured by digital images. Analysis of these high-throughput images will provide novel insights into the functions, interactions, and networks of animal genes governing development. To facilitate comparative analysis, web-based interfaces have been developed to conduct image retrieval based on body part keywords and images. Currently, the keyword annotation of spatiotemporal gene expression patterns is conducted manually. However, this manual practice does not scale with the continuously expanding collection of images. In addition, existing image retrieval systems based on the expression patterns may be made more accurate using keywords.
Results
In this article, we adapt advanced data mining and computer vision techniques to address the key challenges in annotating and retrieving fruit fly gene expression pattern images. To boost the performance of image annotation and retrieval, we propose representations integrating spatial information and sparse features, overcoming the limitations of prior schemes.
Conclusions
We perform systematic experimental studies to evaluate the proposed schemes in comparison with current methods. Experimental results indicate that the integration of spatial information and sparse features lead to consistent performance improvement in image annotation, while for the task of retrieval, sparse features alone yields better results.
ContributorsYuan, Lei (Author) / Woodard, Alexander (Author) / Ji, Shuiwang (Author) / Jiang, Yuan (Author) / Zhou, Zhi-Hua (Author) / Kumar, Sudhir (Author) / Ye, Jieping (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor) / Ira A. Fulton School of Engineering (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2012-05-23

Description
Background
Drosophila melanogaster has been established as a model organism for investigating the developmental gene interactions. The spatio-temporal gene expression patterns of Drosophila melanogaster can be visualized by in situ hybridization and documented as digital images. Automated and efficient tools for analyzing these expression images will provide biological insights into the gene functions, interactions, and networks. To facilitate pattern recognition and comparison, many web-based resources have been created to conduct comparative analysis based on the body part keywords and the associated images. With the fast accumulation of images from high-throughput techniques, manual inspection of images will impose a serious impediment on the pace of biological discovery. It is thus imperative to design an automated system for efficient image annotation and comparison.
Results
We present a computational framework to perform anatomical keywords annotation for Drosophila gene expression images. The spatial sparse coding approach is used to represent local patches of images in comparison with the well-known bag-of-words (BoW) method. Three pooling functions including max pooling, average pooling and Sqrt (square root of mean squared statistics) pooling are employed to transform the sparse codes to image features. Based on the constructed features, we develop both an image-level scheme and a group-level scheme to tackle the key challenges in annotating Drosophila gene expression pattern images automatically. To deal with the imbalanced data distribution inherent in image annotation tasks, the undersampling method is applied together with majority vote. Results on Drosophila embryonic expression pattern images verify the efficacy of our approach.
Conclusion
In our experiment, the three pooling functions perform comparably well in feature dimension reduction. The undersampling with majority vote is shown to be effective in tackling the problem of imbalanced data. Moreover, combining sparse coding and image-level scheme leads to consistent performance improvement in keywords annotation.
Drosophila melanogaster has been established as a model organism for investigating the developmental gene interactions. The spatio-temporal gene expression patterns of Drosophila melanogaster can be visualized by in situ hybridization and documented as digital images. Automated and efficient tools for analyzing these expression images will provide biological insights into the gene functions, interactions, and networks. To facilitate pattern recognition and comparison, many web-based resources have been created to conduct comparative analysis based on the body part keywords and the associated images. With the fast accumulation of images from high-throughput techniques, manual inspection of images will impose a serious impediment on the pace of biological discovery. It is thus imperative to design an automated system for efficient image annotation and comparison.
Results
We present a computational framework to perform anatomical keywords annotation for Drosophila gene expression images. The spatial sparse coding approach is used to represent local patches of images in comparison with the well-known bag-of-words (BoW) method. Three pooling functions including max pooling, average pooling and Sqrt (square root of mean squared statistics) pooling are employed to transform the sparse codes to image features. Based on the constructed features, we develop both an image-level scheme and a group-level scheme to tackle the key challenges in annotating Drosophila gene expression pattern images automatically. To deal with the imbalanced data distribution inherent in image annotation tasks, the undersampling method is applied together with majority vote. Results on Drosophila embryonic expression pattern images verify the efficacy of our approach.
Conclusion
In our experiment, the three pooling functions perform comparably well in feature dimension reduction. The undersampling with majority vote is shown to be effective in tackling the problem of imbalanced data. Moreover, combining sparse coding and image-level scheme leads to consistent performance improvement in keywords annotation.
ContributorsSun, Qian (Author) / Muckatira, Sherin (Author) / Yuan, Lei (Author) / Ji, Shuiwang (Author) / Newfeld, Stuart (Author) / Kumar, Sudhir (Author) / Ye, Jieping (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Ira A. Fulton School of Engineering (Contributor)
Created2013-12-03
Description
Plasmodium falciparum and Plasmodium vivax are two of the main propagators of human malaria. Both species contain the protein, Apical Membrane Antigen 1 (AMA-1), which is involved in the process of host cell invasion. However, the high degree of polymorphisms and antigenic diversity in this protein has prevented consistent single-vaccine success. Furthermore, the three main domains within AMA-1 (Domains I, II, and III), possess variable polymorphic features and levels of diversity. Overcoming this issue may require an understanding of the type of selection acting on AMA-1 in P. falciparum and P. vivax. Therefore, this investigation aimed to determine the type of selection acting on the whole AMA-1 coding sequence and in each domain for P. falciparum and P. vivax. Population structure was investigated on a global scale and among individual countries. AMA-1 sequences were obtained from the National Center for Biotechnology. For P. falciparum, 649 complete and 382 partial sequences were obtained. For P. vivax, 395 sequences were obtained (370 partial). The AMA-1 gene in P. falciparum was found to possess high nonsynonymous polymorphisms and disproportionately low synonymous polymorphisms. Domain I was found to have the most diverse region with consistently high nonsynonymous substitutions across all countries. Large, positive, and significant Z-test scores indicated the presence of positive selection while FST and NST values showed low genetic differentiation across populations. Data trends for all analyses were relatively consistent for the global and country-based analyses. The only country to deviate was Venezuela, which was the only South American country analyzed. Network analyses did not show distinguishable groupings. For P. falciparum, it was concluded that positive diversifying selection was acting on the AMA-1 gene, particularly in Domain I. In AMA-1 of P. vivax, nonsynonymous and synonymous polymorphisms were relatively equal across all analyses. FST and NST values were high, indicating that countries were genetically distinct populations. Network analyses did not show distinguishable grouping; however, the data was limited to small sample sizes. From the data, it was concluded that AMA-1 in P. vivax was evolving neutrally, where selective pressures did not strongly encourage positive or purifying selection specifically. In addition, different AMA-1 P. vivax strains were genetically distinct and this genetic identity correlated with geographic region. Therefore, AMA-1 strains in P. falciparum and P. vivax not only evolve differently and undergo different form of selection, but they also require different vaccine development strategies. A combination of strain-specific vaccines along with preventative measures on an environmental level will likely be more effective than trying to achieve a single, comprehensive vaccine.
ContributorsEspinas, Jaye Frances Palma (Author) / Escalante, Ananias (Thesis director) / Taylor, Jay (Committee member) / Rosenberg, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
Description
The development of plant-derived antigens is very promising in vaccine research and the ability to synthesize vaccines cheaply and safely in plant, which can then be ingested, has enormous potential benefits. The goal of this project is to summarize and synthesize the work of current scientists on this issue into a cohesive argument in favor of plant-derived vaccinations, while acknowledging any possible drawbacks to their development and the actions that are being taken to overcome them. Hepatitis B, a virus for which orally administered, plant-based vaccines are currently being developed, serves as the case study in which these issues are analyzed. It was found that the synthesized protein is effective immunogenic in humans, but there is still the remaining challenge of making it generate a strong enough immune response through simple ingestion. For this reason, it is clear that plant-derived, oral vaccinations merit further research and hold real prospects of success.
ContributorsCurry, Shannon (Author) / Mason, Hugh (Thesis director) / Escalante, Ananias (Committee member) / LePore, Kate (Committee member) / Barrett, The Honors College (Contributor)
Created2008-05
Description
Biogeography is the study of the spatial distribution of the earth's biota, both in the present and the past. Traditionally, biogeographical studies have relied on a combination of surveys of existing populations, fossil evidence, and the geological record of the earth. However, with the advent of relatively inexpensive methods of DNA sequencing, it is now possible to use information concerning the genetic relatedness of individuals in populations to address questions about how those populations came to be where they are today. For example, biogeographical studies of HIV-I provide strong support for the hypothesis that this virus arose in Africa through a host switch from chimpanzees to humans and only began to spread to human populations located on other continents some 60 to 70 years ago (Sharp & Hahn, 2010).
ContributorsZheng, Wenyu (Author) / Taylor, Jesse (Thesis director) / Escalante, Ananias (Committee member) / Thieme, Horst (Committee member) / Barrett, The Honors College (Contributor)
Created2015-05

Description
The entire history of HIV-1 is hidden in its ten thousand bases, where information regarding its evolutionary traversal through the human population can only be unlocked with fine-scale sequence analysis. Measurable footprints of mutation and recombination have imparted upon us a wealth of knowledge, from multiple chimpanzee-to-human transmissions to patterns of neutralizing antibody and drug resistance. Extracting maximum understanding from such diverse data can only be accomplished by analyzing the viral population from many angles. This body of work explores two primary aspects of HIV sequence evolution, point mutation and recombination, through cross-sectional (inter-individual) and longitudinal (intra-individual) investigations, respectively. Cross-sectional Analysis: The role of Haiti in the subtype B pandemic has been hotly debated for years; while there have been many studies, up to this point, no one has incorporated the well-known mechanism of retroviral recombination into their biological model. Prior to the use of recombination detection, multiple analyses produced trees where subtype B appears to have first entered Haiti, followed by a jump into the rest of the world. The results presented here contest the Haiti-first theory of the pandemic and instead suggest simultaneous entries of subtype B into Haiti and the rest of the world. Longitudinal Analysis: Potential N-linked glycosylation sites (PNGS) are the most evolutionarily dynamic component of one of the most evolutionarily dynamic proteins known to date. While the number of mutations associated with the increase or decrease of PNGS frequency over time is high, there are a set of relatively stable sites that persist within and between longitudinally sampled individuals. Here, I identify the most conserved stable PNGSs and suggest their potential roles in host-virus interplay. In addition, I have identified, for the first time, what may be a gp-120-based environmental preference for N-linked glycosylation sites.
ContributorsHepp, Crystal Marie, 1981- (Author) / Rosenberg, Michael S. (Thesis advisor) / Hedrick, Philip (Committee member) / Escalante, Ananias (Committee member) / Kumar, Sudhir (Committee member) / Arizona State University (Publisher)
Created2013

Description
We propose a novel solution to prevent cancer by developing a prophylactic cancer. Several sources of antigens for cancer vaccines have been published. Among these, antigens that contain a frame-shift (FS) peptide or viral peptide are quite attractive for a variety of reasons. FS sequences, from either mistake in RNA processing or in genomic DNA, may lead to generation of neo-peptides that are foreign to the immune system. Viral peptides presumably would originate from exogenous but integrated viral nucleic acid sequences. Both are non-self, therefore lessen concerns about development of autoimmunity. I have developed a bioinformatical approach to identify these aberrant transcripts in the cancer transcriptome. Their suitability for use in a vaccine is evaluated by establishing their frequencies and predicting possible epitopes along with their population coverage according to the prevalence of major histocompatibility complex (MHC) types. Viral transcripts and transcripts with FS mutations from gene fusion, insertion/deletion at coding microsatellite DNA, and alternative splicing were identified in NCBI Expressed Sequence Tag (EST) database. 48 FS chimeric transcripts were validated in 50 breast cell lines and 68 primary breast tumor samples with their frequencies from 4% to 98% by RT-PCR and sequencing confirmation. These 48 FS peptides, if translated and presented, could be used to protect more than 90% of the population in Northern America based on the prediction of epitopes derived from them. Furthermore, we synthesized 150 peptides that correspond to FS and viral peptides that we predicted would exist in tumor patients and we tested over 200 different cancer patient sera. We found a number of serological reactive peptide sequences in cancer patients that had little to no reactivity in healthy controls; strong support for the strength of our bioinformatic approach. This study describes a process used to identify aberrant transcripts that lead to a new source of antigens that can be tested and used in a prophylactic cancer vaccine. The vast amount of transcriptome data of various cancers from the Cancer Genome Atlas (TCGA) project will enhance our ability to further select better cancer antigen candidates.
ContributorsLee, HoJoon (Author) / Johnston, Stephen A. (Thesis advisor) / Kumar, Sudhir (Committee member) / Miller, Laurence (Committee member) / Stafford, Phillip (Committee member) / Sykes, Kathryn (Committee member) / Arizona State University (Publisher)
Created2012

Description
Studies of ancient pathogens are moving beyond simple confirmatory analysis of diseased bone; bioarchaeologists and ancient geneticists are posing nuanced questions and utilizing novel methods capable of confronting the debates surrounding pathogen origins and evolution, and the relationships between humans and disease in the past. This dissertation examines two ancient human diseases through molecular and bioarchaeological lines of evidence, relying on techniques in paleogenetics and phylogenetics to detect, isolate, sequence and analyze ancient and modern pathogen DNA within an evolutionary framework. Specifically this research addresses outstanding issues regarding a) the evolution, origin and phylogenetic placement of the pathogen causing skeletal tuberculosis in New World prior to European contact, and b) the phylogeny and origins of the parasite causing the human leishmaniasis disease complex. An additional chapter presents a review of the major technological and theoretical advances in ancient pathogen genomics to frame the contributions of this work within a rapidly developing field. This overview emphasizes that understanding the evolution of human disease is critical to contextualizing relationships between humans and pathogens, and the epidemiological shifts observed both in the past and in the present era of (re)emerging infectious diseases. These questions continue to be at the forefront of not only pathogen research, but also
bioarchaeological and paleopathological scholarship.
bioarchaeological and paleopathological scholarship.
ContributorsHarkins, Kelly M (Author) / Buikstra, Jane E. (Thesis advisor) / Stone, Anne C (Thesis advisor) / Knudson, Kelly (Committee member) / Kumar, Sudhir (Committee member) / Krause, Johannes (Committee member) / Arizona State University (Publisher)
Created2014

Description
Sparsity has become an important modeling tool in areas such as genetics, signal and audio processing, medical image processing, etc. Via the penalization of l-1 norm based regularization, the structured sparse learning algorithms can produce highly accurate models while imposing various predefined structures on the data, such as feature groups or graphs. In this thesis, I first propose to solve a sparse learning model with a general group structure, where the predefined groups may overlap with each other. Then, I present three real world applications which can benefit from the group structured sparse learning technique. In the first application, I study the Alzheimer's Disease diagnosis problem using multi-modality neuroimaging data. In this dataset, not every subject has all data sources available, exhibiting an unique and challenging block-wise missing pattern. In the second application, I study the automatic annotation and retrieval of fruit-fly gene expression pattern images. Combined with the spatial information, sparse learning techniques can be used to construct effective representation of the expression images. In the third application, I present a new computational approach to annotate developmental stage for Drosophila embryos in the gene expression images. In addition, it provides a stage score that enables one to more finely annotate each embryo so that they are divided into early and late periods of development within standard stage demarcations. Stage scores help us to illuminate global gene activities and changes much better, and more refined stage annotations improve our ability to better interpret results when expression pattern matches are discovered between genes.
ContributorsYuan, Lei (Author) / Ye, Jieping (Thesis advisor) / Wang, Yalin (Committee member) / Xue, Guoliang (Committee member) / Kumar, Sudhir (Committee member) / Arizona State University (Publisher)
Created2013