Matching Items (39)
Filtering by

Clear all filters

Description
Through decades of clinical progress, cochlear implants have brought the world of speech and language to thousands of profoundly deaf patients. However, the technology has many possible areas for improvement, including providing information of non-linguistic cues, also called indexical properties of speech. The field of sensory substitution, providing information relating

Through decades of clinical progress, cochlear implants have brought the world of speech and language to thousands of profoundly deaf patients. However, the technology has many possible areas for improvement, including providing information of non-linguistic cues, also called indexical properties of speech. The field of sensory substitution, providing information relating one sense to another, offers a potential avenue to further assist those with cochlear implants, in addition to the promise they hold for those without existing aids. A user study with a vibrotactile device is evaluated to exhibit the effectiveness of this approach in an auditory gender discrimination task. Additionally, preliminary computational work is included that demonstrates advantages and limitations encountered when expanding the complexity of future implementations.
ContributorsButts, Austin McRae (Author) / Helms Tillery, Stephen (Thesis advisor) / Berisha, Visar (Committee member) / Buneo, Christopher (Committee member) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2015
Description
In some scenarios, true temporal ordering is required to identify the actions occurring in a video. Recently a new synthetic dataset named CATER, was introduced containing 3D objects like sphere, cone, cylinder etc. which undergo simple movements such as slide, pick & place etc. The task defined in the dataset

In some scenarios, true temporal ordering is required to identify the actions occurring in a video. Recently a new synthetic dataset named CATER, was introduced containing 3D objects like sphere, cone, cylinder etc. which undergo simple movements such as slide, pick & place etc. The task defined in the dataset is to identify compositional actions with temporal ordering. In this thesis, a rule-based system and a window-based technique are proposed to identify individual actions (atomic) and multiple actions with temporal ordering (composite) on the CATER dataset. The rule-based system proposed here is a heuristic algorithm that evaluates the magnitude and direction of object movement across frames to determine the atomic action temporal windows and uses these windows to predict the composite actions in the videos. The performance of the rule-based system is validated using the frame-level object coordinates provided in the dataset and it outperforms the performance of the baseline models on the CATER dataset. A window-based training technique is proposed for identifying composite actions in the videos. A pre-trained deep neural network (I3D model) is used as a base network for action recognition. During inference, non-overlapping windows are passed through the I3D network to obtain the atomic action predictions and the predictions are passed through a rule-based system to determine the composite actions. The approach outperforms the state-of-the-art composite action recognition models by 13.37% (mAP 66.47% vs. mAP 53.1%).
ContributorsMaskara, Vivek Kumar (Author) / Venkateswara, Hemanth (Thesis advisor) / McDaniel, Troy (Thesis advisor) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2022
Description
Working memory plays an important role in human activities across academic,professional, and social settings. Working memory is dened as the memory extensively involved in goal-directed behaviors in which information must be retained and manipulated to ensure successful task execution. The aim of this research is to understand the effect of image captioning with

Working memory plays an important role in human activities across academic,professional, and social settings. Working memory is dened as the memory extensively involved in goal-directed behaviors in which information must be retained and manipulated to ensure successful task execution. The aim of this research is to understand the effect of image captioning with image description on an individual's working memory. A study was conducted with eight neutral images comprising situations relatable to daily life such that each image could have a positive or negative description associated with the outcome of the situation in the image. The study consisted of three rounds where the first and second round involved two parts and the third round consisted of one part. The image was captioned a total of five times across the entire study. The findings highlighted that only 25% of participants were able to recall the captions which they captioned for an image after a span of 9-15 days; when comparing the recall rate of the captions, 50% of participants were able to recall the image caption from the previous round in the present round; and out of the positive and negative description associated with the image, 65% of participants recalled the former description rather than the latter. The conclusions drawn from the study are participants tend to retain information for longer periods than the expected duration for working memory, which may be because participants were able to relate the images with their everyday life situations and given a situation with positive and negative information, the human brain is aligned towards positive information over negative information.
ContributorsUppara, Nithiya Shree (Author) / McDaniel, Troy (Thesis advisor) / Venkateswara, Hemanth (Thesis advisor) / Bryan, Chris (Committee member) / Arizona State University (Publisher)
Created2021
Description
Endowing machines with the ability to understand digital images is a critical task for a host of high-impact applications, including pathology detection in radiographic imaging, autonomous vehicles, and assistive technology for the visually impaired. Computer vision systems rely on large corpora of annotated data in order to train task-specific visual

Endowing machines with the ability to understand digital images is a critical task for a host of high-impact applications, including pathology detection in radiographic imaging, autonomous vehicles, and assistive technology for the visually impaired. Computer vision systems rely on large corpora of annotated data in order to train task-specific visual recognition models. Despite significant advances made over the past decade, the fact remains collecting and annotating the data needed to successfully train a model is a prohibitively expensive endeavor. Moreover, these models are prone to rapid performance degradation when applied to data sampled from a different domain. Recent works in the development of deep adaptation networks seek to overcome these challenges by facilitating transfer learning between source and target domains. In parallel, the unification of dominant semi-supervised learning techniques has illustrated unprecedented potential for utilizing unlabeled data to train classification models in defiance of discouragingly meager sets of annotated data.

In this thesis, a novel domain adaptation algorithm -- Domain Adaptive Fusion (DAF) -- is proposed, which encourages a domain-invariant linear relationship between the pixel-space of different domains and the prediction-space while being trained under a domain adversarial signal. The thoughtful combination of key components in unsupervised domain adaptation and semi-supervised learning enable DAF to effectively bridge the gap between source and target domains. Experiments performed on computer vision benchmark datasets for domain adaptation endorse the efficacy of this hybrid approach, outperforming all of the baseline architectures on most of the transfer tasks.
ContributorsDudley, Andrew, M.S (Author) / Panchanathan, Sethuraman (Thesis advisor) / Venkateswara, Hemanth (Committee member) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2019
Description
Parents fulfill a pivotal role in early childhood development of social and communication

skills. In children with autism, the development of these skills can be delayed. Applied

behavioral analysis (ABA) techniques have been created to aid in skill acquisition.

Among these, pivotal response treatment (PRT) has been empirically shown to foster

improvements. Research into

Parents fulfill a pivotal role in early childhood development of social and communication

skills. In children with autism, the development of these skills can be delayed. Applied

behavioral analysis (ABA) techniques have been created to aid in skill acquisition.

Among these, pivotal response treatment (PRT) has been empirically shown to foster

improvements. Research into PRT implementation has also shown that parents can be

trained to be effective interventionists for their children. The current difficulty in PRT

training is how to disseminate training to parents who need it, and how to support and

motivate practitioners after training.

Evaluation of the parents’ fidelity to implementation is often undertaken using video

probes that depict the dyadic interaction occurring between the parent and the child during

PRT sessions. These videos are time consuming for clinicians to process, and often result

in only minimal feedback for the parents. Current trends in technology could be utilized to

alleviate the manual cost of extracting data from the videos, affording greater

opportunities for providing clinician created feedback as well as automated assessments.

The naturalistic context of the video probes along with the dependence on ubiquitous

recording devices creates a difficult scenario for classification tasks. The domain of the

PRT video probes can be expected to have high levels of both aleatory and epistemic

uncertainty. Addressing these challenges requires examination of the multimodal data

along with implementation and evaluation of classification algorithms. This is explored

through the use of a new dataset of PRT videos.

The relationship between the parent and the clinician is important. The clinician can

provide support and help build self-efficacy in addition to providing knowledge and

modeling of treatment procedures. Facilitating this relationship along with automated

feedback not only provides the opportunity to present expert feedback to the parent, but

also allows the clinician to aid in personalizing the classification models. By utilizing a

human-in-the-loop framework, clinicians can aid in addressing the uncertainty in the

classification models by providing additional labeled samples. This will allow the system

to improve classification and provides a person-centered approach to extracting

multimodal data from PRT video probes.
ContributorsCopenhaver Heath, Corey D (Author) / Panchanathan, Sethuraman (Thesis advisor) / McDaniel, Troy (Committee member) / Venkateswara, Hemanth (Committee member) / Davulcu, Hasan (Committee member) / Gaffar, Ashraf (Committee member) / Arizona State University (Publisher)
Created2019
Description
The knee joint has essential functions to support the body weight and maintain normal walking. Neurological diseases like stroke and musculoskeletal disorders like osteoarthritis can affect the function of the knee. Besides physical therapy, robot-assisted therapy using wearable exoskeletons and exosuits has shown the potential as an efficient therapy that

The knee joint has essential functions to support the body weight and maintain normal walking. Neurological diseases like stroke and musculoskeletal disorders like osteoarthritis can affect the function of the knee. Besides physical therapy, robot-assisted therapy using wearable exoskeletons and exosuits has shown the potential as an efficient therapy that helps patients restore their limbs’ functions. Exoskeletons and exosuits are being developed for either human performance augmentation or medical purposes like rehabilitation. Although, the research on exoskeletons started early before exosuits, the research and development on exosuits have recently grown rapidly as exosuits have advantages that exoskeletons lack. The objective of this research is to develop a soft exosuit for knee flexion assistance and validate its ability to reduce the EMG activity of the knee flexor muscles. The exosuit has been developed with a novel soft fabric actuator and novel 3D printed adjustable braces to attach the actuator aligned with the knee. A torque analytical model has been derived and validate experimentally to characterize and predict the torque output of the actuator. In addition to that, the actuator’s deflation and inflation time has been experimentally characterized and a controller has been implemented and the exosuit has been tested on a healthy human subject. It is found that the analytical torque model succeeded to predict the torque output in flexion angle range from 0° to 60° more precisely than analytical models in the literature. Deviations existed beyond 60° might have happened because some factors like fabric extensibility and actuator’s bending behavior. After human testing, results showed that, for the human subject tested, the exosuit gave the best performance when the controller was tuned to inflate at 31.9 % of the gait cycle. At this inflation timing, the biceps femoris, the semitendinosus and the vastus lateralis muscles showed average electromyography (EMG) reduction of - 32.02 %, - 23.05 % and - 2.85 % respectively. Finally, it is concluded that the developed exosuit may assist the knee flexion of more diverse healthy human subjects and it may potentially be used in the future in human performance augmentation and rehabilitation of people with disabilities.
ContributorsHasan, Ibrahim Mohammed Ibrahim (Author) / Zhang, Wenlong (Thesis advisor) / Aukes, Daniel (Committee member) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2021
Description
Touch plays a vital role in maintaining human relationships through social andemotional communications. This research proposes a multi-modal haptic display capable of generating vibrotactile and thermal haptic signals individually and simultaneously. The main objective for creating this device is to explore the importance of touch in social communication, which is absent in traditional

Touch plays a vital role in maintaining human relationships through social andemotional communications. This research proposes a multi-modal haptic display capable of generating vibrotactile and thermal haptic signals individually and simultaneously. The main objective for creating this device is to explore the importance of touch in social communication, which is absent in traditional communication modes like a phone call or a video call. By studying how humans interpret haptically generated messages, this research aims to create a new communication channel for humans. This novel device will be worn on the user's forearm and has a broad scope of applications such as navigation, social interactions, notifications, health care, and education. The research methods include testing patterns in the vibro-thermal modality while noting its realizability and accuracy. Different patterns can be controlled and generated through an Android application connected to the proposed device via Bluetooth. Experimental results indicate that the patterns SINGLE TAP and HOLD/SQUEEZE were easily identifiable and more relatable to social interactions. In contrast, other patterns like UP-DOWN, DOWN-UP, LEFTRIGHT, LEFT-RIGHT, LEFT-DIAGONAL, and RIGHT-DIAGONAL were less identifiable and less relatable to social interactions. Finally, design modifications are required if complex social patterns are needed to be displayed on the forearm.
ContributorsGharat, Shubham Shriniwas (Author) / McDaniel, Troy (Thesis advisor) / Redkar, Sangram (Thesis advisor) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2021
Description
Access to real-time situational information including the relative position and motion of surrounding objects is critical for safe and independent travel. Object or obstacle (OO) detection at a distance is primarily a task of the visual system due to the high resolution information the eyes are able to receive from

Access to real-time situational information including the relative position and motion of surrounding objects is critical for safe and independent travel. Object or obstacle (OO) detection at a distance is primarily a task of the visual system due to the high resolution information the eyes are able to receive from afar. As a sensory organ in particular, the eyes have an unparalleled ability to adjust to varying degrees of light, color, and distance. Therefore, in the case of a non-visual traveler, someone who is blind or low vision, access to visual information is unattainable if it is positioned beyond the reach of the preferred mobility device or outside the path of travel. Although, the area of assistive technology in terms of electronic travel aids (ETA’s) has received considerable attention over the last two decades; surprisingly, the field has seen little work in the area focused on augmenting rather than replacing current non-visual travel techniques, methods, and tools. Consequently, this work describes the design of an intuitive tactile language and series of wearable tactile interfaces (the Haptic Chair, HaptWrap, and HapBack) to deliver real-time spatiotemporal data. The overall intuitiveness of the haptic mappings conveyed through the tactile interfaces are evaluated using a combination of absolute identification accuracy of a series of patterns and subjective feedback through post-experiment surveys. Two types of spatiotemporal representations are considered: static patterns representing object location at a single time instance, and dynamic patterns, added in the HaptWrap, which represent object movement over a time interval. Results support the viability of multi-dimensional haptics applied to the body to yield an intuitive understanding of dynamic interactions occurring around the navigator during travel. Lastly, it is important to point out that the guiding principle of this work centered on providing the navigator with spatial knowledge otherwise unattainable through current mobility techniques, methods, and tools, thus, providing the \emph{navigator} with the information necessary to make informed navigation decisions independently, at a distance.
ContributorsDuarte, Bryan Joiner (Author) / McDaniel, Troy (Thesis advisor) / Davulcu, Hasan (Committee member) / Li, Baoxin (Committee member) / Venkateswara, Hemanth (Committee member) / Arizona State University (Publisher)
Created2020
Description
For the last 10 years, the American Southwest has been experiencing the most persistent drought conditions on record. Based on future climactic predictions, there is a dire need to reduce water usage within Phoenix. An environmentally responsible behavior such as low water use landscaping (xeriscaping), has been shown to reduce

For the last 10 years, the American Southwest has been experiencing the most persistent drought conditions on record. Based on future climactic predictions, there is a dire need to reduce water usage within Phoenix. An environmentally responsible behavior such as low water use landscaping (xeriscaping), has been shown to reduce household water consumption by 40%-70%. While much is known regarding the relationship between socio-demographics and xeriscaping choices, the influence of other variables remains to be explored. Using data from the 2017 Phoenix Area Social Survey, this study investigates the influence of two additional variables - ecological worldview and place identity on xeriscaping choice. Data was analyzed using two models - Ordinary Least Squares (OLS) and Linear Probability Model (LPM). Ecological worldview and place identity, along with income, ethnicity, and gender, were all found to be positively related to xeriscape preference. Additionally, when compared to the LPM, the traditional OLS was found to still be the most robust and appropriate model when measuring landscape preference. Finally, results suggested that programs to foster identity with the local desert mountain parks may help to increase xeriscaping in the Valley and thus lower residential water use.
ContributorsSampson, Marena (Author) / Budruk, Megha (Thesis advisor) / Larson, Kelli (Committee member) / Gall, Melanie (Committee member) / Arizona State University (Publisher)
Created2018
Description
One type of assistive device for the blind has attempted to convert visual information into information that can be perceived through another sense, such as touch or hearing. A vibrotactile haptic display assistive device consists of an array of vibrating elements placed against the skin, allowing the blind individual to

One type of assistive device for the blind has attempted to convert visual information into information that can be perceived through another sense, such as touch or hearing. A vibrotactile haptic display assistive device consists of an array of vibrating elements placed against the skin, allowing the blind individual to receive visual information through touch. However, these approaches have two significant technical challenges: large vibration element size and the number of microcontroller pins required for vibration control, both causing excessively low resolution of the device. Here, I propose and investigate a type of high-resolution vibrotactile haptic display which overcomes these challenges by utilizing a ‘microbeam’ as the vibrating element. These microbeams can then be actuated using only one microcontroller pin connected to a speaker or surface transducer. This approach could solve the low-resolution problem currently present in all haptic displays. In this paper, the results of an investigation into the manufacturability of such a device, simulation of the vibrational characteristics, and prototyping and experimental validation of the device concept are presented. The possible reasons of the frequency shift between the result of the forced or free response of beams and the frequency calculated based on a lumped mass approximation are investigated. It is found that one of the important reasons for the frequency shift is the size effect, the dependency of the elastic modulus on the size and kind of material. This size effect on A2 tool steel for Micro-Meso scale cantilever beams for the proposed system is investigated.
ContributorsWi, Daehan (Author) / SODEMANN, ANGELA A (Thesis advisor) / Redkar, Sangram (Committee member) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2019