Matching Items (53)
Filtering by

Clear all filters

Description
Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has

Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has been mostly ignored. Characterizing the influence of arm configuration (i.e. intrinsic factors) would allow greater comprehension of sensorimotor integration and assist in interpreting exaggerated movement variability in patients. In this study, subjects were placed in a 3-D virtual reality environment and were asked to move from a starting position to one of three targets in the frontal plane with and without visual feedback of the moving limb. The alternating of visual feedback during trials increased uncertainty between the planning and execution phases. The starting limb configurations, adducted and abducted, were varied in separate blocks. Arm configurations were setup by rotating along the shoulder-hand axis to maintain endpoint position. The investigation hypothesized: 1) patterns of endpoint variability of movements would be dependent upon the starting arm configuration and 2) any differences observed would be more apparent in conditions that withheld visual feedback. The results indicated that there were differences in endpoint variability between arm configurations in both visual conditions, but differences in variability increased when visual feedback was withheld. Overall this suggests that in the presence of visual feedback, planning of movements in 3D space mostly uses coordinates that are arm configuration independent. On the other hand, without visual feedback, planning of movements in 3D space relies substantially on intrinsic coordinates.
ContributorsRahman, Qasim (Author) / Buneo, Christopher (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
Description
The human hand relies on information from surrounding environment to distinguish objects based on qualities like size, texture, weight, and compliance. The size of an object can be determined from tactile feedback, proprioception, and visual feedback. This experiment aims to determine the accuracy of size discrimination in physical and virtual

The human hand relies on information from surrounding environment to distinguish objects based on qualities like size, texture, weight, and compliance. The size of an object can be determined from tactile feedback, proprioception, and visual feedback. This experiment aims to determine the accuracy of size discrimination in physical and virtual objects using proprioceptive and tactile feedback. Using both senses will help determine how much proprioceptive and tactile feedback plays a part in discriminating small size variations and whether replacing a missing sensation will increase the subject's accuracy. Ultimately, determining the specific contributions of tactile and proprioceptive feedback mechanisms during object manipulation is important in order to give prosthetic hand users the ability of stereognosis among other manipulation tasks. Two different experiments using physical and virtual objects were required to discover the roles of tactile and proprioceptive feedback. Subjects were asked to compare the size of one block to a previous object. The blocks increased in size by two millimeter increments and were randomized in order to determine whether subjects could correctly identify if a box was smaller, larger, or the same size as the previous box. In the proprioceptive experiment subjects had two sub-sets of experiments each with a different non-tactile cue. The experiment demonstrated that subjects performed better with physical objects compared to virtual objects. This suggests that size discrimination is possible in the absence of tactile feedback, but tactile input is necessary for accuracy in small size discrimination.
ContributorsFrear, Darcy Lynn (Author) / Helms Tillery, Stephen (Thesis director) / Buneo, Christopher (Committee member) / Overstreet, Cynthia (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
Description

Lack of proprioceptive feedback is one cause for the high upper-limb prosthesis abandonment rate. The lack of environmental interaction normalcy from unreliable proprioception creates dissatisfaction among prosthesis users. The purpose of this experiment is to investigate the effects of square breathing on learning to navigate without reliable proprioception. Square breathing

Lack of proprioceptive feedback is one cause for the high upper-limb prosthesis abandonment rate. The lack of environmental interaction normalcy from unreliable proprioception creates dissatisfaction among prosthesis users. The purpose of this experiment is to investigate the effects of square breathing on learning to navigate without reliable proprioception. Square breathing is thought to influence the vagus nerve which is linked to increased learning rates. In this experiment, participants were instructed to reach toward targets in a semi-immersive virtual reality environment. Directional error, peak velocity, and peak acceleration of the reaching hand were investigated before and after participants underwent square breathing training. As the results of<br/>this experiment are inconclusive, further investigation needs to be done with larger sample sizes and examining unperturbed data to fully understand the effects of square breathing on learning new motor strategies in unreliable proprioceptive conditions.

ContributorsBonar, Sonja Marie (Author) / Helms Tillery, Stephen (Thesis director) / Tanner, Justin (Committee member) / VanGuilder, Paul (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Neuromodulation is an emerging field of research that has a proven therapeutic benefit on a number of neurological disorders, including epilepsy and stroke. It is characterized by using exogenous stimulation to modify neural activity. Prior studies have shown the positive effect of non-invasive trigeminal nerve stimulation (TNS) on motor learning.

Neuromodulation is an emerging field of research that has a proven therapeutic benefit on a number of neurological disorders, including epilepsy and stroke. It is characterized by using exogenous stimulation to modify neural activity. Prior studies have shown the positive effect of non-invasive trigeminal nerve stimulation (TNS) on motor learning. However, few studies have explored the effect of this specific neuromodulatory method on the underlying physiological processes, including heart rate variability (HRV), facial skin temperatures, skin conductance level, and respiratory rate. Here we present preliminary results of the effects of 3kHz supraorbital TNS on HRV using non-linear (Poincaré plot descriptors) and time-domain (SDNN) measures of analysis. Twenty-one (21) healthy adult subjects were randomly assigned to 2 groups: 3kHz Active stimulation (n=11) and Sham (n=10). Participants’ physiological markers were monitored continuously across three blocks: one ten-minute baseline block, one twenty-minute treatment block, and one ten-minute recovery block. TNS targeting the ophthalmic branches of the trigeminal nerve was delivered during the treatment block for twenty minutes in 30 sec. ON/OFF cycles. The active stimulation group exhibited larger values of all Poincaré descriptors and SDNN during blocks two and three, signifying increased HRV and autonomic nervous system activity.

ContributorsParmar, Romir (Author) / Buneo, Christopher (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2023-05
Description

Sensorimotor adaptation is a type of learning that allows sustaining accurate movements by adjusting motor output. This allows the brain to adapt to temporary changes when engaged in a certain task. Within sensorimotor adaptation, visuomotor adaptation (VMA) is one’s ability to correct a visual perturbation. In this study, we present

Sensorimotor adaptation is a type of learning that allows sustaining accurate movements by adjusting motor output. This allows the brain to adapt to temporary changes when engaged in a certain task. Within sensorimotor adaptation, visuomotor adaptation (VMA) is one’s ability to correct a visual perturbation. In this study, we present preliminary results on the effects of VMA with the control group, compared to groups undergoing trigeminal nerve stimulation (TNS) or SHAM (placebo) effects. Twenty-two healthy subjects with no past medical history participated in this study. Subjects performed a visuomotor rotation task, which required gradually adapting to a perturbation between hand motion and corresponding visual feedback. Five total blocks were completed: two familiarization blocks, one baseline block, one rotation block with a 30◦ counterclockwise rotation, and one washout block with no rotation. The control group performed better than the 120 Hz (TNS) and SHAM groups due to less directional error (DE) on the respective learning curves. Additionally, the control group adapted faster (less DE) than the SHAM groups that either felt stimulation, or did not feel the stimulation. The results yield new information regarding VMA which can be used in the future when comparing sensorimotor adaptation and its many applications.

ContributorsBass, Trevor (Author) / Buneo, Christopher (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
Description
Psychedelics have received attention in research due to their therapeutic potential, prompting a need for a deeper understanding of their effects. Perception, a cognitive process involving sensory stimuli and interpretation, is known to be altered by psychedelics. This project aims to investigate body image perception under psychedelics' influence, utilizing virtual

Psychedelics have received attention in research due to their therapeutic potential, prompting a need for a deeper understanding of their effects. Perception, a cognitive process involving sensory stimuli and interpretation, is known to be altered by psychedelics. This project aims to investigate body image perception under psychedelics' influence, utilizing virtual reality (VR) and motion capture technology. To validate findings and mitigate memory biases in the experiments by Helms-Tillery et al. (1991) VR can be employed to control stimuli and measure body location perception. Motion capture data serves as a reliable reference system, aiding in the translation of VR data. MATLAB scripts are developed to process motion capture data, defining body position accurately. Troubleshooting and debugging are crucial in ensuring data accuracy. The project culminates in a generalized code applicable to diverse experimental setups, facilitating spatial perception research and laying groundwork for psychedelic studies.
ContributorsBozzo, Isabella (Author) / Helms Tillery, Stephen (Thesis director) / Buneo, Christopher (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2024-05
Description
Biofeedback music is the integration of physiological signals with audible sound for aesthetic considerations, which an individual’s mental status corresponds to musical output. This project looks into how sounds can be drawn from the meditative and attentive states of the brain using the MindWave Mobile EEG biosensor from NeuroSky. With

Biofeedback music is the integration of physiological signals with audible sound for aesthetic considerations, which an individual’s mental status corresponds to musical output. This project looks into how sounds can be drawn from the meditative and attentive states of the brain using the MindWave Mobile EEG biosensor from NeuroSky. With the MindWave and an Arduino microcontroller processor, sonic output is attained by inputting the data collected by the MindWave, and in real time, outputting code that deciphers it into user constructed sound output. The input is scaled from values 0 to 100, measuring the ‘attentive’ state of the mind by observing alpha waves, and distributing this information to the microcontroller. The output of sound comes from sourcing this into the Musical Instrument Shield and varying the musical tonality with different chords and delay of the notes. The manipulation of alpha states highlights the control or lack thereof for the performer and touches on the question of how much control over the output there really is, much like the experimentalist Alvin Lucier displayed with his concepts in brainwave music.
ContributorsQuach, Andrew Duc (Author) / Helms Tillery, Stephen (Thesis director) / Feisst, Sabine (Committee member) / Barrett, The Honors College (Contributor) / Herberger Institute for Design and the Arts (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
Description
The goal of this project was to use the sense of touch to investigate tactile cues during multidigit rotational manipulations of objects. A robotic arm and hand equipped with three multimodal tactile sensors were used to gather data about skin deformation during rotation of a haptic knob. Three different rotation

The goal of this project was to use the sense of touch to investigate tactile cues during multidigit rotational manipulations of objects. A robotic arm and hand equipped with three multimodal tactile sensors were used to gather data about skin deformation during rotation of a haptic knob. Three different rotation speeds and two levels of rotation resistance were used to investigate tactile cues during knob rotation. In the future, this multidigit task can be generalized to similar rotational tasks, such as opening a bottle or turning a doorknob.
ContributorsChalla, Santhi Priya (Author) / Santos, Veronica (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / School of Earth and Space Exploration (Contributor)
Created2014-05
Description
Brain-computer interface technology establishes communication between the brain and a computer, allowing users to control devices, machines, or virtual objects using their thoughts. This study investigates optimal conditions to facilitate learning to operate this interface. It compares two biofeedback methods, which dictate the relationship between brain activity and the movement

Brain-computer interface technology establishes communication between the brain and a computer, allowing users to control devices, machines, or virtual objects using their thoughts. This study investigates optimal conditions to facilitate learning to operate this interface. It compares two biofeedback methods, which dictate the relationship between brain activity and the movement of a virtual ball in a target-hitting task. Preliminary results indicate that a method in which the position of the virtual object directly relates to the amplitude of brain signals is most conducive to success. In addition, this research explores learning in the context of neural signals during training with a BCI task. Specifically, it investigates whether subjects can adapt to parameters of the interface without guidance. This experiment prompts subjects to modulate brain signals spectrally, spatially, and temporally, as well differentially to discriminate between two different targets. However, subjects are not given knowledge regarding these desired changes, nor are they given instruction on how to move the virtual ball. Preliminary analysis of signal trends suggests that some successful participants are able to adapt brain wave activity in certain pre-specified locations and frequency bands over time in order to achieve control. Future studies will further explore these phenomena, and future BCI projects will be advised by these methods, which will give insight into the creation of more intuitive and reliable BCI technology.
ContributorsLancaster, Jenessa Mae (Co-author) / Appavu, Brian (Co-author) / Wahnoun, Remy (Co-author, Committee member) / Helms Tillery, Stephen (Thesis director) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / Department of Psychology (Contributor)
Created2014-05
Description
Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has

Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has been mostly ignored. Characterizing the influence of arm configuration (i.e. intrinsic factors) would allow greater comprehension of sensorimotor integration and assist in interpreting exaggerated movement variability in patients. In this study, subjects were placed in a 3-D virtual reality environment and were asked to move from a starting position to one of three targets in the frontal plane with and without visual feedback of the moving limb. The alternating of visual feedback during trials increased uncertainty between the planning and execution phases. The starting limb configurations, adducted and abducted, were varied in separate blocks. Arm configurations were setup by rotating along the shoulder-hand axis to maintain endpoint position. The investigation hypothesized: 1) patterns of endpoint variability of movements would be dependent upon the starting arm configuration and 2) any differences observed would be more apparent in conditions that withheld visual feedback. The results indicated that there were differences in endpoint variability between arm configurations in both visual conditions, but differences in variability increased when visual feedback was withheld. Overall this suggests that in the presence of visual feedback, planning of movements in 3D space mostly uses coordinates that are arm configuration independent. On the other hand, without visual feedback, planning of movements in 3D space relies substantially on intrinsic coordinates.
ContributorsRahman, Qasim (Author) / Buneo, Christopher (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05