Matching Items (3)
Filtering by

Clear all filters

130416-Thumbnail Image.png
Description
High phase order systems have been proposed at the early inception of power transmission engineering, but few direct applications have been made. High phase order transmission should be considered as an alternative in the case of high power density applications. In this article, an analysis of transposition of high phase

High phase order systems have been proposed at the early inception of power transmission engineering, but few direct applications have been made. High phase order transmission should be considered as an alternative in the case of high power density applications. In this article, an analysis of transposition of high phase order overhead transmission lines is presented and voltage unbalance in high phase order systems is considered. Definitions are presented for “fully transposed” and “roll transposed” along with advantages and disadvantages of each. A generalized voltage unbalance factor is introduced and utilized to determine the benefits of transposition. The generalized voltage unbalance factor is compared with three other possible unbalance factors to determine if the generalized voltage unbalance factor is an appropriate indication of unbalance. Exemplary results are presented for 6-phase and 12-phase designs. Conclusions show that the generalized voltage unbalance factor is a good indication of transmission line voltage unbalance and certain configurations may not need full rotation transposition to minimize the unbalance factor. The transposition analysis and voltage unbalance are considerations in the assessment of high phase order as a high power transmission alternative.
Created2014-11-18
130417-Thumbnail Image.png
Description
The increase of transmission line thermal ratings by reconductoring with high temperature low sag conductors is a comparatively new technology introduced for transmission expansion. A special design permits high temperature low sag conductors to operate at higher temperatures, therefore allowing passage of higher current and, thus, increasing the thermal rating

The increase of transmission line thermal ratings by reconductoring with high temperature low sag conductors is a comparatively new technology introduced for transmission expansion. A special design permits high temperature low sag conductors to operate at higher temperatures, therefore allowing passage of higher current and, thus, increasing the thermal rating of the transmission line. The comparatively high cost of high temperature low sag conductors may be an obstacle to its large-scale implementation. This article evaluates the expenditures for transmission line reconductoring using high temperature low sag, the consequent benefits obtained from the potential decrease in operating cost for thermally limited power transmission systems. Estimates of the “payback period” are used to evaluate the cost effectiveness of reconductoring with high temperature low sag. The evaluation is performed using a 225 bus equivalent of the 2012 summer peak Arizona portion of the Western Electricity Coordinating Council. The method is offered for transmission expansion analysis in which an economic benefit is calculated to assist in the transmission expansion decision.
Created2015-02-07
130428-Thumbnail Image.png
Description
The impact of increasing penetration of converter control-based generators (CCBGs) in a large-scale power system is assessed through a model based small signal stability analysis. Three test bed cases for the years 2010, 2020, and 2022 of the Western Electricity Coordinating Council (WECC) in the United States are used for

The impact of increasing penetration of converter control-based generators (CCBGs) in a large-scale power system is assessed through a model based small signal stability analysis. Three test bed cases for the years 2010, 2020, and 2022 of the Western Electricity Coordinating Council (WECC) in the United States are used for the analysis. Increasing penetration of wind-based Type 3 and wind-based Type 4 and PV Solar CCBGs is used in the tests. The participation and interaction of CCBGs and synchronous generators in traditional electromechanical interarea modes is analyzed. Two new types of modes dominated by CCBGs are identified. The characteristics of these new modes are described and compared to electromechanical modes in the frequency domain. An examination of the mechanism of the interaction between the CCBG control states and the synchronous generator control states is presented and validated through dynamic simulations. Actual system and forecast load data are used throughout.
Created2014-09-01