Matching Items (61)
Filtering by

Clear all filters

126596-Thumbnail Image.png
Description

Society is heavily dependent on a reliable electric supply; all infrastructure systems depend on electricity to operate. When the electric system fails, the impacts can be catastrophic (food spoilage, inoperable medical devices, lack of access to water, etc.). The social impacts, defined as the direct and indirect impacts on people,

Society is heavily dependent on a reliable electric supply; all infrastructure systems depend on electricity to operate. When the electric system fails, the impacts can be catastrophic (food spoilage, inoperable medical devices, lack of access to water, etc.). The social impacts, defined as the direct and indirect impacts on people, of power outages must be explored as the likelihood of power outages and blackouts are increasing. However, compared to other hazards, such as heat and flooding, the knowledge base on the impacts of power outages is relatively small. The purpose of this thesis is to identify what is currently known about the social impacts of power outages, identify where gaps in the literature exist, and deploy a survey to explore power outage experiences at the household level. This thesis is comprised of two chapters, a systematic literature review on the current knowledge of the social impacts of power outages and a multi-city survey focused on power outage experiences.

The first chapter comprised of a systematic literature review using a combined search of in Scopus which returned 762 candidate articles were identified that potentially explored the social impacts of power outages. However, after multiple filtering criteria were applied, only 45 articles met all criteria. Four themes were used to classify the literature, not exclusively, including modeling, social, technical, and other. Only papers that were classified as “social” - meaning they observed how people were affected by a power outage - or in combination with other categories were used within the review.

From the literature, populations of concern were identified, including minority demographics - specifically Blacks or African Americans, children, elderly, and rural populations. The most commonly reported health concerns were from those that rely on medical devices for chronic conditions and unsafe generator practices. Criminal activity was also reported to increase during prolonged power outages and can be mitigated by consistent messaging on where to receive assistance and when power will be restored. Providing financial assistance and resources such as food and water can reduce the crime rate temporarily, but the crime rate can be expected to increase once the relief expires. Authorities should expect looting to occur, especially in poorer areas, during prolonged power outages. Gaps in the literature were identified and future directions for research were provided.

The second chapter consists of a multi-city survey that targeted three major cities across the United States (Detroit, MI; Miami, FL; and Phoenix, AZ). The survey was disseminated through Amazon’s Mechanical Turk and hosted by Qualtrics. 896 participants from the three cities qualified to complete the full version of the survey. Three criteria had to be met for participants to complete the full survey including residing in one of the three target cities, living at their primary address for a majority of the year, and indicate they had experienced a power outage within the last five years.

Participants were asked questions regarding the number of outages experienced in the last five years, the length of their most recent and longest outage experienced, if they owned a generator, how they managed their longest power outage, if participants or anyone in their household relies on a medical device, the financial burden their power outage caused, and standard demographic- and income-related questions. Race was a significant variable that influenced the outage duration length but not frequency in Phoenix and Detroit. Income was not a significant variable associated with experiencing greater economic impacts, such as having thrown food away because of an outage and not receiving help during the longest outage. Additional assessments similar to this survey are needed to better understand household power outage experiences.

Findings from this thesis demonstrate traditional metrics used in vulnerability indices were not indicative of who experienced the greatest effects of power outages. Additionally, other factors that are not included in these indices, such as owning adaptive resources including medical devices and generators in Phoenix and Detroit, are factors in reducing negative outcomes. More research is needed on this topic to indicate which populations are more likely to experience factors that can influence positive or negative outage outcomes.

ContributorsAndresen, Adam (Author) / Hondula, David M. (Contributor, Contributor) / Gall, Melanie (Contributor) / Meerow, Sara (Contributor)
Created2020-07-20
162992-Thumbnail Image.png
Description

According to the Centers for Disease Control and Prevention (CDC), more people die in the U.S. from heat than from all other natural disasters combined. According to the Environmental Protection Agency (EPA), more than 1,300 deaths per year in the United States are due to extreme heat. Arizona, California and

According to the Centers for Disease Control and Prevention (CDC), more people die in the U.S. from heat than from all other natural disasters combined. According to the Environmental Protection Agency (EPA), more than 1,300 deaths per year in the United States are due to extreme heat. Arizona, California and Texas are the three states with the highest burden, accounting for 43% of all heat-related deaths according to the CDC.

Although only 5% of housing in Maricopa County, Arizona, is mobile homes, approximately 30% of indoor heat-related deaths occur in these homes. Thus, the residents of mobile homes in Maricopa County are disproportionately affected by heat. Mobile home residents are extremely exposed to heat due to the high density of mobile home parks, poor construction of dwellings, lack of vegetation, socio-demographic features and not being eligible to get utility and financial assistance.

We researched numerous solutions across different domains that could help build the heat resilience of mobile home residents. As a result we found 50 different solutions for diverse stakeholders, budgets and available resources. The goal of this toolbox is to present these solutions and to explain how to apply them in order to get the most optimal result and build About this Solutions Guide People who live in mobile homes are 6 to 8 times more likely to die of heat-associated deaths. heat resilience for mobile home residents. These solutions were designed as a coordinated set of actions for everyone — individual households, mobile home residents, mobile home park owners, cities and counties, private businesses and nonprofits serving mobile home parks, and other stakeholders — to be able to contribute to heat mitigation for mobile home residents.

When we invest in a collective, coordinated suite of solutions that are designed specifically to address the heat vulnerability of mobile homes residents, we can realize a resilience dividend in maintaining affordable, feasible, liveable housing for the 20 million Americans who choose mobile homes and manufactured housing as their place to live and thrive.

ContributorsVarfalameyeva, Katsiaryna (Author) / Solís, Patricia (Author) / Phillips, Lora A. (Author) / Charley, Elisha (Author) / Hondula, David M. (Author) / Kear, Mark (Author)
Created2021
Description

En la zona metropolitana de Phoenix, el calor urbano está afectando la salud, la seguridad y la economía y se espera que estos impactos empeoren con el tiempo. Se prevé que el número de días por encima de 110˚F aumentará más del doble para el 2060. En mayo de 2017,

En la zona metropolitana de Phoenix, el calor urbano está afectando la salud, la seguridad y la economía y se espera que estos impactos empeoren con el tiempo. Se prevé que el número de días por encima de 110˚F aumentará más del doble para el 2060. En mayo de 2017, The Nature Conservancy, el Departamento de Salud Pública del condado de Maricopa, Central Arizona Conservation Alliance, la Red de Investigación en Sostenibilidad sobre la Resiliencia Urbana a Eventos Extremos, el Centro de Investigación del Clima Urbano de Arizona State University y el Center for Whole Communities lanzaron un proceso participativo de planificación de acciones contra el calor para identificar tanto estrategias de mitigación como de adaptación a fin de reducir directamente el calor y mejorar la capacidad de los residentes para lidiar con el calor. Las organizaciones comunitarias con relaciones existentes en tres vecindarios seleccionados para la planificación de acciones contra el calor se unieron más tarde al equipo del proyecto: Phoenix Revitalization Corporation, RAILMesa y Puente Movement. Más allá de construir un plan de acción comunitario contra el calor y completar proyectos de demostración, este proceso participativo fue diseñado para desarrollar conciencia, iniciativa y cohesión social en las comunidades subrepresentadas. Asimismo el proceso de planificación de acciones contra el calor fue diseñado para servir como modelo para esfuerzos futuros de resiliencia al calor y crear una visión local, contextual y culturalmente apropiada de un futuro más seguro y saludable. El método iterativo de planificación y participación utilizado por el equipo del proyecto fortaleció las relaciones dentro y entre los vecindarios, las organizaciones comunitarias, los responsables de la toma de decisiones y el equipo núcleo, y combinó la sabiduría de la narración de historias y la evidencia científica para comprender mejor los desafíos actuales y futuros que enfrentan los residentes durante eventos de calor extremo. Como resultado de tres talleres en cada comunidad, los residentes presentaron ideas que quieren ver implementadas para aumentar su comodidad y seguridad térmica durante los días de calor extremo.

Como se muestra a continuación, las ideas de los residentes se interceptaron en torno a conceptos similares, pero las soluciones específicas variaron entre los vecindarios. Por ejemplo, a todos los vecindarios les gustaría agregar sombra a sus corredores peatonales, pero variaron las preferencias para la ubicación de las mejoras para dar sombra. Algunos vecindarios priorizaron las rutas de transporte público, otros priorizaron las rutas utilizadas por los niños en su camino a la escuela y otros quieren paradas de descanso con sombra en lugares clave. Surgieron cuatro temas estratégicos generales en los tres vecindarios: promover y educar; mejorar la comodidad/capacidad de afrontamiento; mejorar la seguridad; fortalecer la capacidad. Estos temas señalan que existen serios desafíos de seguridad contra el calor en la vida diaria de los residentes y que la comunidad, los negocios y los sectores responsables de la toma de decisión deben abordar esos desafíos.

Los elementos del plan de acción contra el calor están diseñados para incorporarse a otros esfuerzos para aliviar el calor, crear ciudades resilientes al clima y brindar salud y seguridad pública. Los socios de implementación del plan de acción contra el calor provienen de la región de la zona metropolitana de Phoenix, y se brindan recomendaciones para apoyar la transformación a una ciudad más fresca.

Para ampliar la escala de este enfoque, los miembros del equipo del proyecto recomiendan a) compromiso continuo e inversiones en estos vecindarios para implementar el cambio señalado como vital por los residentes, b) repetir el proceso de planificación de acción contra el calor con líderes comunitarios en otros vecindarios, y c) trabajar con las ciudades, los planificadores urbanos y otras partes interesadas para institucionalizar este proceso, apoyando las políticas y el uso de las métricas propuestas para crear comunidades más frescas.

ContributorsMesserschmidt, Maggie (Contributor) / Guardaro, Melissa (Contributor) / White, Jessica R. (Contributor) / Berisha, Vjollca (Contributor) / Hondula, David M. (Contributor) / Feagan, Mathieu (Contributor) / Grimm, Nancy (Contributor) / Beule, Stacie (Contributor) / Perea, Masavi (Contributor) / Ramirez, Maricruz (Contributor) / Olivas, Eva (Contributor) / Bueno, Jessica (Contributor) / Crummey, David (Contributor) / Winkle, Ryan (Contributor) / Rothballer, Kristin (Contributor) / Mocine-McQueen, Julian (Contributor) / Maurer, Maria (Artist) / Coseo, Paul (Artist) / Crank, Peter J (Designer) / Broadbent, Ashley (Designer) / McCauley, Lisa (Designer) / Nature's Cooling Systems Project (Contributor) / Nature Conservancy (U.S.) (Contributor) / Phoenix Revitalization Corporation (Contributor) / Puente Movement (Contributor) / Maricopa County (Ariz.). Department of Public Health (Contributor) / Central Arizona Conservation Alliance (Contributor) / Arizona State University. Urban Climate Research Center (Contributor) / Arizona State University. Urban Resilience to Extremes Sustainability Research Network (Contributor) / Center for Whole Communities (Contributor) / RAILmesa (Contributor) / Vitalyst Health Foundation (Funder)
Created2022
130357-Thumbnail Image.png
Description
Background
The maintenance of chromosomal integrity is an essential task of every living organism and cellular repair mechanisms exist to guard against insults to DNA. Given the importance of this process, it is expected that DNA repair proteins would be evolutionarily conserved, exhibiting very minimal sequence change over time. However, BRCA1,

Background
The maintenance of chromosomal integrity is an essential task of every living organism and cellular repair mechanisms exist to guard against insults to DNA. Given the importance of this process, it is expected that DNA repair proteins would be evolutionarily conserved, exhibiting very minimal sequence change over time. However, BRCA1, an essential gene involved in DNA repair, has been reported to be evolving rapidly despite the fact that many protein-altering mutations within this gene convey a significantly elevated risk for breast and ovarian cancers.
Results
To obtain a deeper understanding of the evolutionary trajectory of BRCA1, we analyzed complete BRCA1 gene sequences from 23 primate species. We show that specific amino acid sites have experienced repeated selection for amino acid replacement over primate evolution. This selection has been focused specifically on humans and our closest living relatives, chimpanzees (Pan troglodytes) and bonobos (Pan paniscus). After examining BRCA1 polymorphisms in 7 bonobo, 44 chimpanzee, and 44 rhesus macaque (Macaca mulatta) individuals, we find considerable variation within each of these species and evidence for recent selection in chimpanzee populations. Finally, we also sequenced and analyzed BRCA2 from 24 primate species and find that this gene has also evolved under positive selection.
Conclusions
While mutations leading to truncated forms of BRCA1 are clearly linked to cancer phenotypes in humans, there is also an underlying selective pressure in favor of amino acid-altering substitutions in this gene. A hypothesis where viruses are the drivers of this natural selection is discussed.
ContributorsLou, Dianne I. (Author) / McBee, Ross M. (Author) / Le, Uyen Q. (Author) / Stone, Anne (Author) / Wilkerson, Gregory K. (Author) / Demogines, Ann M. (Author) / Sawyer, Sara L. (Author) / College of Liberal Arts and Sciences (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2014-07-11
130362-Thumbnail Image.png
Description
Background
Multicellular organisms consist of cells of many different types that are established during development. Each type of cell is characterized by the unique combination of expressed gene products as a result of spatiotemporal gene regulation. Currently, a fundamental challenge in regulatory biology is to elucidate the gene expression controls that

Background
Multicellular organisms consist of cells of many different types that are established during development. Each type of cell is characterized by the unique combination of expressed gene products as a result of spatiotemporal gene regulation. Currently, a fundamental challenge in regulatory biology is to elucidate the gene expression controls that generate the complex body plans during development. Recent advances in high-throughput biotechnologies have generated spatiotemporal expression patterns for thousands of genes in the model organism fruit fly Drosophila melanogaster. Existing qualitative methods enhanced by a quantitative analysis based on computational tools we present in this paper would provide promising ways for addressing key scientific questions.
Results
We develop a set of computational methods and open source tools for identifying co-expressed embryonic domains and the associated genes simultaneously. To map the expression patterns of many genes into the same coordinate space and account for the embryonic shape variations, we develop a mesh generation method to deform a meshed generic ellipse to each individual embryo. We then develop a co-clustering formulation to cluster the genes and the mesh elements, thereby identifying co-expressed embryonic domains and the associated genes simultaneously. Experimental results indicate that the gene and mesh co-clusters can be correlated to key developmental events during the stages of embryogenesis we study. The open source software tool has been made available at http://compbio.cs.odu.edu/fly/.
Conclusions
Our mesh generation and machine learning methods and tools improve upon the flexibility, ease-of-use and accuracy of existing methods.
ContributorsZhang, Wenlu (Author) / Feng, Daming (Author) / Li, Rongjian (Author) / Chernikov, Andrey (Author) / Chrisochoides, Nikos (Author) / Osgood, Christopher (Author) / Konikoff, Charlotte (Author) / Newfeld, Stuart (Author) / Kumar, Sudhir (Author) / Ji, Shuiwang (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2013-12-28
130363-Thumbnail Image.png
Description
Background
Fruit fly embryogenesis is one of the best understood animal development systems, and the spatiotemporal gene expression dynamics in this process are captured by digital images. Analysis of these high-throughput images will provide novel insights into the functions, interactions, and networks of animal genes governing development. To facilitate comparative analysis,

Background
Fruit fly embryogenesis is one of the best understood animal development systems, and the spatiotemporal gene expression dynamics in this process are captured by digital images. Analysis of these high-throughput images will provide novel insights into the functions, interactions, and networks of animal genes governing development. To facilitate comparative analysis, web-based interfaces have been developed to conduct image retrieval based on body part keywords and images. Currently, the keyword annotation of spatiotemporal gene expression patterns is conducted manually. However, this manual practice does not scale with the continuously expanding collection of images. In addition, existing image retrieval systems based on the expression patterns may be made more accurate using keywords.
Results
In this article, we adapt advanced data mining and computer vision techniques to address the key challenges in annotating and retrieving fruit fly gene expression pattern images. To boost the performance of image annotation and retrieval, we propose representations integrating spatial information and sparse features, overcoming the limitations of prior schemes.
Conclusions
We perform systematic experimental studies to evaluate the proposed schemes in comparison with current methods. Experimental results indicate that the integration of spatial information and sparse features lead to consistent performance improvement in image annotation, while for the task of retrieval, sparse features alone yields better results.
ContributorsYuan, Lei (Author) / Woodard, Alexander (Author) / Ji, Shuiwang (Author) / Jiang, Yuan (Author) / Zhou, Zhi-Hua (Author) / Kumar, Sudhir (Author) / Ye, Jieping (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor) / Ira A. Fulton School of Engineering (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2012-05-23
130364-Thumbnail Image.png
Description
Background
Drosophila melanogaster has been established as a model organism for investigating the developmental gene interactions. The spatio-temporal gene expression patterns of Drosophila melanogaster can be visualized by in situ hybridization and documented as digital images. Automated and efficient tools for analyzing these expression images will provide biological insights into the

Background
Drosophila melanogaster has been established as a model organism for investigating the developmental gene interactions. The spatio-temporal gene expression patterns of Drosophila melanogaster can be visualized by in situ hybridization and documented as digital images. Automated and efficient tools for analyzing these expression images will provide biological insights into the gene functions, interactions, and networks. To facilitate pattern recognition and comparison, many web-based resources have been created to conduct comparative analysis based on the body part keywords and the associated images. With the fast accumulation of images from high-throughput techniques, manual inspection of images will impose a serious impediment on the pace of biological discovery. It is thus imperative to design an automated system for efficient image annotation and comparison.
Results
We present a computational framework to perform anatomical keywords annotation for Drosophila gene expression images. The spatial sparse coding approach is used to represent local patches of images in comparison with the well-known bag-of-words (BoW) method. Three pooling functions including max pooling, average pooling and Sqrt (square root of mean squared statistics) pooling are employed to transform the sparse codes to image features. Based on the constructed features, we develop both an image-level scheme and a group-level scheme to tackle the key challenges in annotating Drosophila gene expression pattern images automatically. To deal with the imbalanced data distribution inherent in image annotation tasks, the undersampling method is applied together with majority vote. Results on Drosophila embryonic expression pattern images verify the efficacy of our approach.
Conclusion
In our experiment, the three pooling functions perform comparably well in feature dimension reduction. The undersampling with majority vote is shown to be effective in tackling the problem of imbalanced data. Moreover, combining sparse coding and image-level scheme leads to consistent performance improvement in keywords annotation.
ContributorsSun, Qian (Author) / Muckatira, Sherin (Author) / Yuan, Lei (Author) / Ji, Shuiwang (Author) / Newfeld, Stuart (Author) / Kumar, Sudhir (Author) / Ye, Jieping (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Ira A. Fulton School of Engineering (Contributor)
Created2013-12-03
130314-Thumbnail Image.png
Description
Large quantities of sodic and alkaline bauxite residue are produced globally as a by-product from alumina refineries. Ecological stoichiometry of key elements [nitrogen (N) and phosphorus (P)] plays a critical role in establishing vegetation cover in bauxite residue sand (BRS). Here we examined how changes in soil chemical properties over

Large quantities of sodic and alkaline bauxite residue are produced globally as a by-product from alumina refineries. Ecological stoichiometry of key elements [nitrogen (N) and phosphorus (P)] plays a critical role in establishing vegetation cover in bauxite residue sand (BRS). Here we examined how changes in soil chemical properties over time in rehabilitated sodic and alkaline BRS affected leaf N to P stoichiometry of native species used for rehabilitation. Both Ca and soil pH influenced the shifts in leaf N:P ratios of the study species as supported by consistently significant positive relationships (P < 0.001) between these soil indices and leaf N:P ratios. Shifts from N to P limitation were evident for N-fixing species, while N limitation was consistently experienced by non-N-fixing plant species. In older rehabilitated BRS embankments, soil and plant indices (Ca, Na, pH, EC, ESP and leaf N:P ratios) tended to align with those of the natural ecosystem, suggesting improved rehabilitation performance. These findings highlight that leaf N:P stoichiometry can effectively provide a meaningful assessment on understanding nutrient limitation and productivity of native species used for vegetating highly sodic and alkaline BRS, and is a crucial indicator for assessing ecological rehabilitation performance.
ContributorsGoloran, Johnvie B. (Author) / Chen, Chengrong (Author) / Phillips, Ian R. (Author) / Elser, James (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2015-10-07
167589-Thumbnail Image.png
Description

BACKGROUND: The City of Phoenix initiated the HeatReady program in 2018 to prepare for extreme heat, as there was no official tool, framework, or mechanism at the city level to manage extreme heat. The current landscape of heat safety culture in schools, which are critical community hubs, has received less

BACKGROUND: The City of Phoenix initiated the HeatReady program in 2018 to prepare for extreme heat, as there was no official tool, framework, or mechanism at the city level to manage extreme heat. The current landscape of heat safety culture in schools, which are critical community hubs, has received less illumination. HeatReady Schools—a critical component of a HeatReady City—are those that are increasingly able to identify, prepare for, mitigate, track, and respond to the negative impacts of schoolgrounds heat. However, minimal attention has been given to formalize heat preparedness in schools to mitigate high temperatures and health concerns in schoolchildren, a heat-vulnerable population. This study set out to understand heat perceptions, (re)actions, and recommendations of key stakeholders and to identify critical themes around heat readiness. METHODS: An exploratory sequential mixed-methods case study approach was used. These methods focused on acquiring new insight on heat perceptions at elementary schools through semi-structured interviews using thematic analysis and the Delphi panel. Participants included public health professionals and school community members at two elementary schools—one public charter, one public—in South Phoenix, Arizona, a region that has been burdened historically with inequitable distribution of heat resources due to environmental racism and injustices. RESULTS: Findings demonstrated that 1) current heat safety resources are available but not fully utilized within the school sites, 2) expert opinions support that extreme heat readiness plans must account for site-specific needs, particularly education as a first step, and 3) students are negatively impacted by the effects of extreme heat, whether direct or indirect, both inside and outside the classroom. CONCLUSIONS: From key informant interviews and a Delphi panel, a list of 30 final recommendations were developed as important actions to be taken to become “HeatReady.” Future work will apply these recommendations in a HeatReady School Growth Tool that schools can tailor be to their individual needs to improve heat safety and protection measures at schools.

ContributorsShortridge, Adora (Author) / Walker, William VI (Author) / White, Dave (Committee member) / Guardaro, Melissa (Committee member) / Hondula, David M. (Committee member) / Vanos, Jennifer K. (Committee member) / School of Sustainability (Contributor)
Created2022-04-18
161203-Thumbnail Image.png
Description

To address the dearth of knowledge about person-based and trip-level exposure, we developed the Icarus model. Icarus uses mesoscale traffic model—activity-based model—to analyze the heat exposure of regions of interest at an individual level. The goal with Icarus was to design accurate, granular models of population and temperature behavior for

To address the dearth of knowledge about person-based and trip-level exposure, we developed the Icarus model. Icarus uses mesoscale traffic model—activity-based model—to analyze the heat exposure of regions of interest at an individual level. The goal with Icarus was to design accurate, granular models of population and temperature behavior for a target region, which could be transformed into a heat exposure model by means of simulation and spatial-temporal joining. By combining and implementing the most robust software and data available, Icarus was able to capture person-based exposure with unparalleled detail. Here we describe the model methodology. We use the metropolitan region of Phoenix, Arizona, USA to carry out a case study using Icarus.

ContributorsLi, Rui (Author) / Brownlee, Ben (Author) / Chester, Mikhail Vin (Author) / Hondula, David M. (Author) / Middel, Ariane (Author) / Michne, Austin (Author) / Watkins, Lance (Author)