Matching Items (16)
Description

Perfection is extremely difficult to achieve when playing team sports. This is especially true for lacrosse, a sport where dropped passes, missed shots and turnovers are prevalent even at the college and professional levels of the game. In order to improve on mistakes, teams must first recognize where the errors

Perfection is extremely difficult to achieve when playing team sports. This is especially true for lacrosse, a sport where dropped passes, missed shots and turnovers are prevalent even at the college and professional levels of the game. In order to improve on mistakes, teams must first recognize where the errors are being made. The purpose of this project is to implement the DMAIC process improvement method into lacrosse, with the goal of identifying and implementing improvements, leading to a more successful team.
In order to use DMAIC, lacrosse was expressed as a process that included five phases: offense, defense, riding, clearing and faceoffs. Data was gathered for each phase using game film from the Arizona State Men’s Club Lacrosse Team over the course of the 2019 and 2020 seasons. The data was then analyzed by comparing the output statistics of each phase to the goal differential, number of goals scored, and number of goals against. Once the areas of improvement were determined, additional analysis was done to determine why these certain areas needed improvement. The results provided what changes needed to be made in order to improve the team. In order to ensure the team sustained their success, control measures were put in place to determine what action needs to be taken and when.

Created2021-05
Description
Most staff planning for airline industries are done using point estimates; these do not account for the probabilistic nature of employees not showing up to work, and the airline company risks being under or overstaffed at different times, which increases costs and deteriorates customer service. This model proposes utilizing a

Most staff planning for airline industries are done using point estimates; these do not account for the probabilistic nature of employees not showing up to work, and the airline company risks being under or overstaffed at different times, which increases costs and deteriorates customer service. This model proposes utilizing a stochastic method for American Airlines to schedule their ground crew staff. We developed a stochastic model for scheduling that incorporates the risks of absent employees and as well as reliability so that stakeholders can determine the level of reliability they want to maintain in their system based on the costs. We also incorporated a preferences component to the model in order to increase staff satisfaction in the schedules they get assigned based on their predetermined preferences. Since this is a general staffing model, this can be utilized for an airline crew or virtually any other workforce so long as certain parameters about the population can be determined.
ContributorsOtis, Matthew (Co-author) / Reyes, Katherine (Co-author) / Gel, Esma (Thesis director) / Jacobs, Tim (Committee member) / Clough, Michael (Committee member) / Barrett, The Honors College (Contributor)
Created2016-05
Description
In 2010, for the first time in human history, more than half of the world's total population lived in cities; this number is expected to increase to 60% or more by 2050. The goal of this research effort is to create a comprehensive model and modelling framework for megacities, middleweight

In 2010, for the first time in human history, more than half of the world's total population lived in cities; this number is expected to increase to 60% or more by 2050. The goal of this research effort is to create a comprehensive model and modelling framework for megacities, middleweight cities, and urban agglomerations, collectively referred to as dense urban areas. The motivation for this project comes from the United States Army's desire for readiness in all operating environments including dense urban areas. Though there is valuable insight in research to support Army operational behaviors, megacities are of unique interest to nearly every societal sector imaginable. A novel application for determining both main effects and interactive effects between factors within a dense urban area is a Design of Experiments- providing insight on factor causations. Regression Modelling can also be employed for analysis of dense urban areas, providing wide ranging insights into correlations between factors and their interactions. Past studies involving megacities concern themselves with general trend of cities and their operation. This study is unique in its efforts to model a singular megacity to enable decision support for military operational planning, as well as potential decision support to city planners to increase the sustainability of these dense urban areas and megacities.
ContributorsMathesen, Logan Michael (Author) / Zenzen, Frances (Thesis director) / Jennings, Cheryl (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
The crew planning problem in the airline industry presents a very computationally complex problem of high importance to the business. Airlines must schedule crew members to ensure that all flights are staffed while remaining in compliance with the business needs and regulatory requirements set by entities such as unions and

The crew planning problem in the airline industry presents a very computationally complex problem of high importance to the business. Airlines must schedule crew members to ensure that all flights are staffed while remaining in compliance with the business needs and regulatory requirements set by entities such as unions and FAA. With the magnitude of operation of the prominent players in the airline industry today, the crew staffing problem proves very large and has become heavily reliant on operations research solution methodologies. An area of opportunity that has not yet been extensively researched lies in the planning of crew vacation. This paper develops a model driven by the idea of system risk that constructs an optimal vacation grid for the time period of one year. The model generates a daily allocation that maximizes vacation offering while ensuring a given level of system reliability. The model is then implemented using data from US Airways and model improvements are provided for practical application in the airline industry based on the output.
ContributorsFisher, Tignes Noel (Author) / Gel, Esma (Thesis director) / Jacobs, Tim (Committee member) / Clough, Michael (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor) / Department of Supply Chain Management (Contributor)
Created2015-05
Description

Ultimate Frisbee or "Ultimate," is a fast growing field sport that is being played competitively at universities across the country. Many mid-tier college teams have the goal of winning as many games as possible, however they also need to grow their program by training and retaining new players. The purpose

Ultimate Frisbee or "Ultimate," is a fast growing field sport that is being played competitively at universities across the country. Many mid-tier college teams have the goal of winning as many games as possible, however they also need to grow their program by training and retaining new players. The purpose of this project was to create a prototype statistical tool that maximizes a player line-up's probability of scoring the next point, while having as equal playing time across all experienced and novice players as possible. Game, player, and team data was collected for 25 different games played over the course of 4 tournaments during Fall 2017 and early Spring 2018 using the UltiAnalytics iPad application. "Amount of Top 1/3 Players" was the measure of equal playing time, and "Line Efficiency" and "Line Interaction" represented a line's probability of scoring. After running a logistic regression, Line Efficiency was found to be the more accurate predictor of scoring outcome than Line Interaction. An "Equal PT Measure vs. Line Efficiency" graph was then created and the plot showed what the optimal lines were depending on what the user's preferences were at that point in time. Possible next steps include testing the model and refining it as needed.

ContributorsSpence, Andrea Nicole (Author) / McCarville, Daniel R. (Thesis director) / Pavlic, Theodore (Committee member) / Industrial, Systems and Operations Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
Every year, millions of guests visit theme parks internationally. Within that massive population, accidents and emergencies are bound to occur. Choosing the correct location for emergency responders inside of the park could mean the difference between life and death. In an effort to provide the utmost safety for the guests

Every year, millions of guests visit theme parks internationally. Within that massive population, accidents and emergencies are bound to occur. Choosing the correct location for emergency responders inside of the park could mean the difference between life and death. In an effort to provide the utmost safety for the guests of a park, it is important to make the best decision when selecting the location for emergency response crews. A theme park is different from a regular residential or commercial area because the crowds and shows block certain routes, and they change throughout the day. We propose an optimization model that selects staging locations for emergency medical responders in a theme park to maximize the number of responses that can occur within a pre-specified time. The staging areas are selected from a candidate set of restricted access locations where the responders can store their equipment. Our solution approach considers all routes to access any park location, including areas that are unavailable to a regular guest. Theme parks are a highly dynamic environment. Because special events occurring in the park at certain hours (e.g., parades) might impact the responders' travel times, our model's decisions also include the time dimension in the location and re-location of the responders. Our solution provides the optimal location of the responders for each time partition, including backup responders. When an optimal solution is found, the model is also designed to consider alternate optimal solutions that provide a more balanced workload for the crews.
ContributorsLivingston, Noah Russell (Author) / Sefair, Jorge (Thesis director) / Askin, Ronald (Committee member) / Industrial, Systems and Operations Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
Description

Virtual Reality is being widely adapted for use in the consumer market. There are adaptations of the technology for every purpose, from education, to gaming, and even medical. There are businesses being formed worldwide that incorporate the gaming utility in an arcade/internet café style. However, there are other plausible business

Virtual Reality is being widely adapted for use in the consumer market. There are adaptations of the technology for every purpose, from education, to gaming, and even medical. There are businesses being formed worldwide that incorporate the gaming utility in an arcade/internet café style. However, there are other plausible business models. There is the preexisting model that companies are currently using, another option is to add this technology to preexisting physical arcades, and to create a new business with practices decided by consumer statistics. These three models were tested in this study to determine the profitability, feasibility, and best practices for each. Each business model appears to be incredibly profitable based on the assumptions used for this study.

ContributorsDunn, John Ryan (Author) / McCarville, Daniel R. (Thesis director) / Jennings, Cheryl (Committee member) / Industrial, Systems and Operations Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
Description
Commuting is a significant cost in time and in travel expenses for working individuals and a major contributor to emissions in the United States. This project focuses on increasing the efficiency of an intersection through the use of "light metering." Light metering involves a series of lights leading up to

Commuting is a significant cost in time and in travel expenses for working individuals and a major contributor to emissions in the United States. This project focuses on increasing the efficiency of an intersection through the use of "light metering." Light metering involves a series of lights leading up to an intersection forcing cars to stop further away from the final intersection in smaller queues instead of congregating in a large queue before the final intersection. The simulation software package AnyLogic was used to model a simple two-lane intersection with and without light metering. It was found that light metering almost eliminates start-up delay by preventing a long queue to form in front of the modeled intersection. Shorter queue lengths and reduction in the start-up delays prevents cycle failure and significantly reduces the overall delay for the intersection. However, frequent deceleration and acceleration for a few of the cars occurs before each light meter. This solution significantly reduces the traffic density before the intersection and the overall delay but does not appear to be a better emission alternative due to an increase in acceleration. Further research would need to quantify the difference in emissions for this model compared to a standard intersection.
ContributorsGlavin, Erin (Author) / Pavlic, Theodore (Thesis director) / Sefair, Jorge (Committee member) / Industrial, Systems and Operations Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
As the move towards sustainable urbanism grows, understanding how the city has previously been envisioned and designed will be useful to moving forward. This work examines the legacy of urban design theories, what these theories have implied about what the city should be, and their sustainability consequences. Noticing three prominent

As the move towards sustainable urbanism grows, understanding how the city has previously been envisioned and designed will be useful to moving forward. This work examines the legacy of urban design theories, what these theories have implied about what the city should be, and their sustainability consequences. Noticing three prominent urban design visions of the city, the technological city (as proposed in 1922 by Le Corbusier's Ville contemporaine and later in 1933 by his Ville Radieuse (The Radiant City), and in 1935 by Frank Lloyd Wright's' Broadacre City), the social city (as explored in 1961 by Jane Jacobs and in 1976 by Edward Relph of the University of Chicago), and the ecological city (as expounded upon in 1924 by both Lewis Mumford and in 1969 by Ian McHarg), I have newly applied the social-ecological-technical systems framework (SETS) to help classify and analyze these urban design theories and how they have mixed to create hybrid perspectives in more recent urban design theory. Lastly, I have proposed an urban design theory that envisions the sustainable city as an ongoing process. Hopefully, this vision that will hopefully be useful to the future of sustainable development in cities, as will a more organized understanding of urban design theories and their sustainability outcomes.
ContributorsWeber, Martha Stewart (Author) / Coseo, Paul (Thesis director) / Larson, Kelli (Committee member) / Industrial, Systems and Operations Engineering Program (Contributor) / The Design School (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
The term kaizen is derived from the Japanese words “kai” meaning change and “zen” meaning good, and is a popular business philosophy for continuous improvement used in industrial engineering. KaiZEN: the Art of Continuous Improvement is an exploration of the relationship between design and engineering, and how these principles can

The term kaizen is derived from the Japanese words “kai” meaning change and “zen” meaning good, and is a popular business philosophy for continuous improvement used in industrial engineering. KaiZEN: the Art of Continuous Improvement is an exploration of the relationship between design and engineering, and how these principles can be applied to home and work environments for the everyday reader. Readers will learn common practices used in industry, especially manufacturing environments, and how to use the same innovative solutions in their home and work life. Applying these principles will allow anyone to thrive in a space of aesthetic and functional efficiency that can improve state of mind, quality of life, and unlock the best version of oneself. By the end readers will become more observant of their surroundings and organize their environment with intention. They will have a deeper connection to the theory of continuous improvement and realize the unlimited potential of work, life, and self. The text is delivered in the format of a “coffee-table book” with concept illustrations and easy-to-read passages and applications. The book discusses the following industrial engineering principles: Lean Six Sigma, ergonomics, human factors engineering, network optimization, the “shortest path” problem, workplace design, economics, psychology, and physiology. It also explores applications of design principles like Feng shui, hygge, color psychology, modern farmhouse, bohemian, and minimalism. The text is divided into home and work sections, with organizing recommendations for home elements, living room, kitchen, bedroom, and bathroom. The work section discusses workstation ergonomics, network optimization, and budgeting.
ContributorsScholz, Averie (Author) / Jennings, Cheryl (Thesis director) / Custer, Lisa (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05